458 lines
19 KiB
C
458 lines
19 KiB
C
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2010, Willow Garage, Inc.
|
||
|
|
* Copyright (c) 2012-, Open Perception, Inc.
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* $Id$
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#pragma once
|
||
|
|
|
||
|
|
// PCL includes
|
||
|
|
#include <pcl/registration/correspondence_estimation.h>
|
||
|
|
#include <pcl/registration/default_convergence_criteria.h>
|
||
|
|
#include <pcl/registration/registration.h>
|
||
|
|
#include <pcl/registration/transformation_estimation_point_to_plane_lls.h>
|
||
|
|
#include <pcl/registration/transformation_estimation_svd.h>
|
||
|
|
#include <pcl/registration/transformation_estimation_symmetric_point_to_plane_lls.h>
|
||
|
|
#include <pcl/memory.h> // for dynamic_pointer_cast, pcl::make_shared, shared_ptr
|
||
|
|
|
||
|
|
namespace pcl {
|
||
|
|
/** \brief @b IterativeClosestPoint provides a base implementation of the Iterative
|
||
|
|
* Closest Point algorithm. The transformation is estimated based on Singular Value
|
||
|
|
* Decomposition (SVD).
|
||
|
|
*
|
||
|
|
* The algorithm has several termination criteria:
|
||
|
|
*
|
||
|
|
* <ol>
|
||
|
|
* <li>Number of iterations has reached the maximum user imposed number of iterations
|
||
|
|
* (via \ref setMaximumIterations)</li> <li>The epsilon (difference) between the
|
||
|
|
* previous transformation and the current estimated transformation is smaller than an
|
||
|
|
* user imposed value (via \ref setTransformationEpsilon)</li> <li>The sum of Euclidean
|
||
|
|
* squared errors is smaller than a user defined threshold (via \ref
|
||
|
|
* setEuclideanFitnessEpsilon)</li>
|
||
|
|
* </ol>
|
||
|
|
*
|
||
|
|
*
|
||
|
|
* Usage example:
|
||
|
|
* \code
|
||
|
|
* IterativeClosestPoint<PointXYZ, PointXYZ> icp;
|
||
|
|
* // Set the input source and target
|
||
|
|
* icp.setInputSource (cloud_source);
|
||
|
|
* icp.setInputTarget (cloud_target);
|
||
|
|
*
|
||
|
|
* // Set the max correspondence distance to 5cm (e.g., correspondences with higher
|
||
|
|
* // distances will be ignored)
|
||
|
|
* icp.setMaxCorrespondenceDistance (0.05);
|
||
|
|
* // Set the maximum number of iterations (criterion 1)
|
||
|
|
* icp.setMaximumIterations (50);
|
||
|
|
* // Set the transformation epsilon (criterion 2)
|
||
|
|
* icp.setTransformationEpsilon (1e-8);
|
||
|
|
* // Set the euclidean distance difference epsilon (criterion 3)
|
||
|
|
* icp.setEuclideanFitnessEpsilon (1);
|
||
|
|
*
|
||
|
|
* // Perform the alignment
|
||
|
|
* icp.align (cloud_source_registered);
|
||
|
|
*
|
||
|
|
* // Obtain the transformation that aligned cloud_source to cloud_source_registered
|
||
|
|
* Eigen::Matrix4f transformation = icp.getFinalTransformation ();
|
||
|
|
* \endcode
|
||
|
|
*
|
||
|
|
* \author Radu B. Rusu, Michael Dixon
|
||
|
|
* \ingroup registration
|
||
|
|
*/
|
||
|
|
template <typename PointSource, typename PointTarget, typename Scalar = float>
|
||
|
|
class IterativeClosestPoint : public Registration<PointSource, PointTarget, Scalar> {
|
||
|
|
public:
|
||
|
|
using PointCloudSource =
|
||
|
|
typename Registration<PointSource, PointTarget, Scalar>::PointCloudSource;
|
||
|
|
using PointCloudSourcePtr = typename PointCloudSource::Ptr;
|
||
|
|
using PointCloudSourceConstPtr = typename PointCloudSource::ConstPtr;
|
||
|
|
|
||
|
|
using PointCloudTarget =
|
||
|
|
typename Registration<PointSource, PointTarget, Scalar>::PointCloudTarget;
|
||
|
|
using PointCloudTargetPtr = typename PointCloudTarget::Ptr;
|
||
|
|
using PointCloudTargetConstPtr = typename PointCloudTarget::ConstPtr;
|
||
|
|
|
||
|
|
using PointIndicesPtr = PointIndices::Ptr;
|
||
|
|
using PointIndicesConstPtr = PointIndices::ConstPtr;
|
||
|
|
|
||
|
|
using Ptr = shared_ptr<IterativeClosestPoint<PointSource, PointTarget, Scalar>>;
|
||
|
|
using ConstPtr =
|
||
|
|
shared_ptr<const IterativeClosestPoint<PointSource, PointTarget, Scalar>>;
|
||
|
|
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::reg_name_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::getClassName;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::input_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::indices_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::target_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::nr_iterations_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::max_iterations_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::previous_transformation_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::final_transformation_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::transformation_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::transformation_epsilon_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::
|
||
|
|
transformation_rotation_epsilon_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::converged_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::corr_dist_threshold_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::inlier_threshold_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::min_number_correspondences_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::update_visualizer_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::euclidean_fitness_epsilon_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::correspondences_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::transformation_estimation_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::correspondence_estimation_;
|
||
|
|
using Registration<PointSource, PointTarget, Scalar>::correspondence_rejectors_;
|
||
|
|
|
||
|
|
typename pcl::registration::DefaultConvergenceCriteria<Scalar>::Ptr
|
||
|
|
convergence_criteria_;
|
||
|
|
using Matrix4 = typename Registration<PointSource, PointTarget, Scalar>::Matrix4;
|
||
|
|
|
||
|
|
/** \brief Empty constructor. */
|
||
|
|
IterativeClosestPoint()
|
||
|
|
: x_idx_offset_(0)
|
||
|
|
, y_idx_offset_(0)
|
||
|
|
, z_idx_offset_(0)
|
||
|
|
, nx_idx_offset_(0)
|
||
|
|
, ny_idx_offset_(0)
|
||
|
|
, nz_idx_offset_(0)
|
||
|
|
, use_reciprocal_correspondence_(false)
|
||
|
|
, source_has_normals_(false)
|
||
|
|
, target_has_normals_(false)
|
||
|
|
{
|
||
|
|
reg_name_ = "IterativeClosestPoint";
|
||
|
|
transformation_estimation_.reset(
|
||
|
|
new pcl::registration::
|
||
|
|
TransformationEstimationSVD<PointSource, PointTarget, Scalar>());
|
||
|
|
correspondence_estimation_.reset(
|
||
|
|
new pcl::registration::
|
||
|
|
CorrespondenceEstimation<PointSource, PointTarget, Scalar>);
|
||
|
|
convergence_criteria_.reset(
|
||
|
|
new pcl::registration::DefaultConvergenceCriteria<Scalar>(
|
||
|
|
nr_iterations_, transformation_, *correspondences_));
|
||
|
|
};
|
||
|
|
|
||
|
|
/**
|
||
|
|
* \brief Due to `convergence_criteria_` holding references to the class members,
|
||
|
|
* it is tricky to correctly implement its copy and move operations correctly. This
|
||
|
|
* can result in subtle bugs and to prevent them, these operations for ICP have
|
||
|
|
* been disabled.
|
||
|
|
*
|
||
|
|
* \todo: remove deleted ctors and assignments operations after resolving the issue
|
||
|
|
*/
|
||
|
|
IterativeClosestPoint(const IterativeClosestPoint&) = delete;
|
||
|
|
IterativeClosestPoint(IterativeClosestPoint&&) = delete;
|
||
|
|
IterativeClosestPoint&
|
||
|
|
operator=(const IterativeClosestPoint&) = delete;
|
||
|
|
IterativeClosestPoint&
|
||
|
|
operator=(IterativeClosestPoint&&) = delete;
|
||
|
|
|
||
|
|
/** \brief Empty destructor */
|
||
|
|
~IterativeClosestPoint() {}
|
||
|
|
|
||
|
|
/** \brief Returns a pointer to the DefaultConvergenceCriteria used by the
|
||
|
|
* IterativeClosestPoint class. This allows to check the convergence state after the
|
||
|
|
* align() method as well as to configure DefaultConvergenceCriteria's parameters not
|
||
|
|
* available through the ICP API before the align() method is called. Please note that
|
||
|
|
* the align method sets max_iterations_, euclidean_fitness_epsilon_ and
|
||
|
|
* transformation_epsilon_ and therefore overrides the default / set values of the
|
||
|
|
* DefaultConvergenceCriteria instance. \return Pointer to the IterativeClosestPoint's
|
||
|
|
* DefaultConvergenceCriteria.
|
||
|
|
*/
|
||
|
|
inline typename pcl::registration::DefaultConvergenceCriteria<Scalar>::Ptr
|
||
|
|
getConvergeCriteria()
|
||
|
|
{
|
||
|
|
return convergence_criteria_;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Provide a pointer to the input source
|
||
|
|
* (e.g., the point cloud that we want to align to the target)
|
||
|
|
*
|
||
|
|
* \param[in] cloud the input point cloud source
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
setInputSource(const PointCloudSourceConstPtr& cloud) override
|
||
|
|
{
|
||
|
|
Registration<PointSource, PointTarget, Scalar>::setInputSource(cloud);
|
||
|
|
const auto fields = pcl::getFields<PointSource>();
|
||
|
|
source_has_normals_ = false;
|
||
|
|
for (const auto& field : fields) {
|
||
|
|
if (field.name == "x")
|
||
|
|
x_idx_offset_ = field.offset;
|
||
|
|
else if (field.name == "y")
|
||
|
|
y_idx_offset_ = field.offset;
|
||
|
|
else if (field.name == "z")
|
||
|
|
z_idx_offset_ = field.offset;
|
||
|
|
else if (field.name == "normal_x") {
|
||
|
|
source_has_normals_ = true;
|
||
|
|
nx_idx_offset_ = field.offset;
|
||
|
|
}
|
||
|
|
else if (field.name == "normal_y") {
|
||
|
|
source_has_normals_ = true;
|
||
|
|
ny_idx_offset_ = field.offset;
|
||
|
|
}
|
||
|
|
else if (field.name == "normal_z") {
|
||
|
|
source_has_normals_ = true;
|
||
|
|
nz_idx_offset_ = field.offset;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Provide a pointer to the input target
|
||
|
|
* (e.g., the point cloud that we want to align to the target)
|
||
|
|
*
|
||
|
|
* \param[in] cloud the input point cloud target
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
setInputTarget(const PointCloudTargetConstPtr& cloud) override
|
||
|
|
{
|
||
|
|
Registration<PointSource, PointTarget, Scalar>::setInputTarget(cloud);
|
||
|
|
const auto fields = pcl::getFields<PointSource>();
|
||
|
|
target_has_normals_ = false;
|
||
|
|
for (const auto& field : fields) {
|
||
|
|
if (field.name == "normal_x" || field.name == "normal_y" ||
|
||
|
|
field.name == "normal_z") {
|
||
|
|
target_has_normals_ = true;
|
||
|
|
break;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Set whether to use reciprocal correspondence or not
|
||
|
|
*
|
||
|
|
* \param[in] use_reciprocal_correspondence whether to use reciprocal correspondence
|
||
|
|
* or not
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setUseReciprocalCorrespondences(bool use_reciprocal_correspondence)
|
||
|
|
{
|
||
|
|
use_reciprocal_correspondence_ = use_reciprocal_correspondence;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Obtain whether reciprocal correspondence are used or not */
|
||
|
|
inline bool
|
||
|
|
getUseReciprocalCorrespondences() const
|
||
|
|
{
|
||
|
|
return (use_reciprocal_correspondence_);
|
||
|
|
}
|
||
|
|
|
||
|
|
protected:
|
||
|
|
/** \brief Apply a rigid transform to a given dataset. Here we check whether
|
||
|
|
* the dataset has surface normals in addition to XYZ, and rotate normals as well.
|
||
|
|
* \param[in] input the input point cloud
|
||
|
|
* \param[out] output the resultant output point cloud
|
||
|
|
* \param[in] transform a 4x4 rigid transformation
|
||
|
|
* \note Can be used with cloud_in equal to cloud_out
|
||
|
|
*/
|
||
|
|
virtual void
|
||
|
|
transformCloud(const PointCloudSource& input,
|
||
|
|
PointCloudSource& output,
|
||
|
|
const Matrix4& transform);
|
||
|
|
|
||
|
|
/** \brief Rigid transformation computation method with initial guess.
|
||
|
|
* \param output the transformed input point cloud dataset using the rigid
|
||
|
|
* transformation found \param guess the initial guess of the transformation to
|
||
|
|
* compute
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
computeTransformation(PointCloudSource& output, const Matrix4& guess) override;
|
||
|
|
|
||
|
|
/** \brief Looks at the Estimators and Rejectors and determines whether their
|
||
|
|
* blob-setter methods need to be called */
|
||
|
|
virtual void
|
||
|
|
determineRequiredBlobData();
|
||
|
|
|
||
|
|
/** \brief XYZ fields offset. */
|
||
|
|
std::size_t x_idx_offset_, y_idx_offset_, z_idx_offset_;
|
||
|
|
|
||
|
|
/** \brief Normal fields offset. */
|
||
|
|
std::size_t nx_idx_offset_, ny_idx_offset_, nz_idx_offset_;
|
||
|
|
|
||
|
|
/** \brief The correspondence type used for correspondence estimation. */
|
||
|
|
bool use_reciprocal_correspondence_;
|
||
|
|
|
||
|
|
/** \brief Internal check whether source dataset has normals or not. */
|
||
|
|
bool source_has_normals_;
|
||
|
|
/** \brief Internal check whether target dataset has normals or not. */
|
||
|
|
bool target_has_normals_;
|
||
|
|
|
||
|
|
/** \brief Checks for whether estimators and rejectors need various data */
|
||
|
|
bool need_source_blob_, need_target_blob_;
|
||
|
|
};
|
||
|
|
|
||
|
|
/** \brief @b IterativeClosestPointWithNormals is a special case of
|
||
|
|
* IterativeClosestPoint, that uses a transformation estimated based on
|
||
|
|
* Point to Plane distances by default.
|
||
|
|
*
|
||
|
|
* By default, this implementation uses the traditional point to plane objective
|
||
|
|
* and computes point to plane distances using the normals of the target point
|
||
|
|
* cloud. It also provides the option (through setUseSymmetricObjective) of
|
||
|
|
* using the symmetric objective function of [Rusinkiewicz 2019]. This objective
|
||
|
|
* uses the normals of both the source and target point cloud and has a similar
|
||
|
|
* computational cost to the traditional point to plane objective while also
|
||
|
|
* offering improved convergence speed and a wider basin of convergence.
|
||
|
|
*
|
||
|
|
* Note that this implementation not demean the point clouds which can lead
|
||
|
|
* to increased numerical error. If desired, a user can demean the point cloud,
|
||
|
|
* run iterative closest point, and composite the resulting ICP transformation
|
||
|
|
* with the translations from demeaning to obtain a transformation between
|
||
|
|
* the original point clouds.
|
||
|
|
*
|
||
|
|
* \author Radu B. Rusu, Matthew Cong
|
||
|
|
* \ingroup registration
|
||
|
|
*/
|
||
|
|
template <typename PointSource, typename PointTarget, typename Scalar = float>
|
||
|
|
class IterativeClosestPointWithNormals
|
||
|
|
: public IterativeClosestPoint<PointSource, PointTarget, Scalar> {
|
||
|
|
public:
|
||
|
|
using PointCloudSource = typename IterativeClosestPoint<PointSource,
|
||
|
|
PointTarget,
|
||
|
|
Scalar>::PointCloudSource;
|
||
|
|
using PointCloudTarget = typename IterativeClosestPoint<PointSource,
|
||
|
|
PointTarget,
|
||
|
|
Scalar>::PointCloudTarget;
|
||
|
|
using Matrix4 =
|
||
|
|
typename IterativeClosestPoint<PointSource, PointTarget, Scalar>::Matrix4;
|
||
|
|
|
||
|
|
using IterativeClosestPoint<PointSource, PointTarget, Scalar>::reg_name_;
|
||
|
|
using IterativeClosestPoint<PointSource, PointTarget, Scalar>::
|
||
|
|
transformation_estimation_;
|
||
|
|
using IterativeClosestPoint<PointSource, PointTarget, Scalar>::
|
||
|
|
correspondence_rejectors_;
|
||
|
|
|
||
|
|
using Ptr = shared_ptr<IterativeClosestPoint<PointSource, PointTarget, Scalar>>;
|
||
|
|
using ConstPtr =
|
||
|
|
shared_ptr<const IterativeClosestPoint<PointSource, PointTarget, Scalar>>;
|
||
|
|
|
||
|
|
/** \brief Empty constructor. */
|
||
|
|
IterativeClosestPointWithNormals()
|
||
|
|
{
|
||
|
|
reg_name_ = "IterativeClosestPointWithNormals";
|
||
|
|
setUseSymmetricObjective(false);
|
||
|
|
setEnforceSameDirectionNormals(true);
|
||
|
|
// correspondence_rejectors_.add
|
||
|
|
};
|
||
|
|
|
||
|
|
/** \brief Empty destructor */
|
||
|
|
virtual ~IterativeClosestPointWithNormals() {}
|
||
|
|
|
||
|
|
/** \brief Set whether to use a symmetric objective function or not
|
||
|
|
*
|
||
|
|
* \param[in] use_symmetric_objective whether to use a symmetric objective function or
|
||
|
|
* not
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setUseSymmetricObjective(bool use_symmetric_objective)
|
||
|
|
{
|
||
|
|
use_symmetric_objective_ = use_symmetric_objective;
|
||
|
|
if (use_symmetric_objective_) {
|
||
|
|
auto symmetric_transformation_estimation = pcl::make_shared<
|
||
|
|
pcl::registration::TransformationEstimationSymmetricPointToPlaneLLS<
|
||
|
|
PointSource,
|
||
|
|
PointTarget,
|
||
|
|
Scalar>>();
|
||
|
|
symmetric_transformation_estimation->setEnforceSameDirectionNormals(
|
||
|
|
enforce_same_direction_normals_);
|
||
|
|
transformation_estimation_ = symmetric_transformation_estimation;
|
||
|
|
}
|
||
|
|
else {
|
||
|
|
transformation_estimation_.reset(
|
||
|
|
new pcl::registration::TransformationEstimationPointToPlaneLLS<PointSource,
|
||
|
|
PointTarget,
|
||
|
|
Scalar>());
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Obtain whether a symmetric objective is used or not */
|
||
|
|
inline bool
|
||
|
|
getUseSymmetricObjective() const
|
||
|
|
{
|
||
|
|
return use_symmetric_objective_;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Set whether or not to negate source or target normals on a per-point basis
|
||
|
|
* such that they point in the same direction. Only applicable to the symmetric
|
||
|
|
* objective function.
|
||
|
|
*
|
||
|
|
* \param[in] enforce_same_direction_normals whether to negate source or target
|
||
|
|
* normals on a per-point basis such that they point in the same direction.
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setEnforceSameDirectionNormals(bool enforce_same_direction_normals)
|
||
|
|
{
|
||
|
|
enforce_same_direction_normals_ = enforce_same_direction_normals;
|
||
|
|
auto symmetric_transformation_estimation = dynamic_pointer_cast<
|
||
|
|
pcl::registration::TransformationEstimationSymmetricPointToPlaneLLS<PointSource,
|
||
|
|
PointTarget,
|
||
|
|
Scalar>>(
|
||
|
|
transformation_estimation_);
|
||
|
|
if (symmetric_transformation_estimation)
|
||
|
|
symmetric_transformation_estimation->setEnforceSameDirectionNormals(
|
||
|
|
enforce_same_direction_normals_);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Obtain whether source or target normals are negated on a per-point basis
|
||
|
|
* such that they point in the same direction or not */
|
||
|
|
inline bool
|
||
|
|
getEnforceSameDirectionNormals() const
|
||
|
|
{
|
||
|
|
return enforce_same_direction_normals_;
|
||
|
|
}
|
||
|
|
|
||
|
|
protected:
|
||
|
|
/** \brief Apply a rigid transform to a given dataset
|
||
|
|
* \param[in] input the input point cloud
|
||
|
|
* \param[out] output the resultant output point cloud
|
||
|
|
* \param[in] transform a 4x4 rigid transformation
|
||
|
|
* \note Can be used with cloud_in equal to cloud_out
|
||
|
|
*/
|
||
|
|
virtual void
|
||
|
|
transformCloud(const PointCloudSource& input,
|
||
|
|
PointCloudSource& output,
|
||
|
|
const Matrix4& transform);
|
||
|
|
|
||
|
|
/** \brief Type of objective function (asymmetric vs. symmetric) used for transform
|
||
|
|
* estimation */
|
||
|
|
bool use_symmetric_objective_;
|
||
|
|
/** \brief Whether or not to negate source and/or target normals such that they point
|
||
|
|
* in the same direction in the symmetric objective function */
|
||
|
|
bool enforce_same_direction_normals_;
|
||
|
|
};
|
||
|
|
|
||
|
|
} // namespace pcl
|
||
|
|
|
||
|
|
#include <pcl/registration/impl/icp.hpp>
|