145 lines
4.5 KiB
C
Raw Permalink Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#pragma once
#include <Eigen/Core>
#include <string.h>
#include <algorithm>
#include <vector>
namespace pcl {
namespace distances {
/** \brief Compute the median value from a set of doubles
* \param[in] fvec the set of doubles
* \param[in] m the number of doubles in the set
*/
inline double
computeMedian(double* fvec, int m)
{
// Copy the values to vectors for faster sorting
std::vector<double> data(m);
memcpy(&data[0], fvec, sizeof(double) * m);
std::nth_element(data.begin(), data.begin() + (data.size() >> 1), data.end());
return (data[data.size() >> 1]);
}
/** \brief Use a Huber kernel to estimate the distance between two vectors
* \param[in] p_src the first eigen vector
* \param[in] p_tgt the second eigen vector
* \param[in] sigma the sigma value
*/
inline double
huber(const Eigen::Vector4f& p_src, const Eigen::Vector4f& p_tgt, double sigma)
{
Eigen::Array4f diff = (p_tgt.array() - p_src.array()).abs();
double norm = 0.0;
for (int i = 0; i < 3; ++i) {
if (diff[i] < sigma)
norm += diff[i] * diff[i];
else
norm += 2.0 * sigma * diff[i] - sigma * sigma;
}
return (norm);
}
/** \brief Use a Huber kernel to estimate the distance between two vectors
* \param[in] diff the norm difference between two vectors
* \param[in] sigma the sigma value
*/
inline double
huber(double diff, double sigma)
{
double norm = 0.0;
if (diff < sigma)
norm += diff * diff;
else
norm += 2.0 * sigma * diff - sigma * sigma;
return (norm);
}
/** \brief Use a Gedikli kernel to estimate the distance between two vectors
* (for more information, see
* \param[in] val the norm difference between two vectors
* \param[in] clipping the clipping value
* \param[in] slope the slope. Default: 4
*/
inline double
gedikli(double val, double clipping, double slope = 4)
{
return (1.0 / (1.0 + pow(std::abs(val) / clipping, slope)));
}
/** \brief Compute the Manhattan distance between two eigen vectors.
* \param[in] p_src the first eigen vector
* \param[in] p_tgt the second eigen vector
*/
inline double
l1(const Eigen::Vector4f& p_src, const Eigen::Vector4f& p_tgt)
{
return ((p_src.array() - p_tgt.array()).abs().sum());
}
/** \brief Compute the Euclidean distance between two eigen vectors.
* \param[in] p_src the first eigen vector
* \param[in] p_tgt the second eigen vector
*/
inline double
l2(const Eigen::Vector4f& p_src, const Eigen::Vector4f& p_tgt)
{
return ((p_src - p_tgt).norm());
}
/** \brief Compute the squared Euclidean distance between two eigen vectors.
* \param[in] p_src the first eigen vector
* \param[in] p_tgt the second eigen vector
*/
inline double
l2Sqr(const Eigen::Vector4f& p_src, const Eigen::Vector4f& p_tgt)
{
return ((p_src - p_tgt).squaredNorm());
}
} // namespace distances
} // namespace pcl