714 lines
17 KiB
C
Raw Permalink Normal View History

#pragma once
#include <pcl/pcl_macros.h>
#if defined __GNUC__
#pragma GCC system_header
#endif
#include <unsupported/Eigen/Polynomials> // for PolynomialSolver, PolynomialSolverBase
namespace Eigen {
template <typename _Scalar>
class PolynomialSolver<_Scalar, 2> : public PolynomialSolverBase<_Scalar, 2> {
public:
using PS_Base = PolynomialSolverBase<_Scalar, 2>;
EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES(PS_Base)
public:
virtual ~PolynomialSolver() {}
template <typename OtherPolynomial>
inline PolynomialSolver(const OtherPolynomial& poly, bool& hasRealRoot)
{
compute(poly, hasRealRoot);
}
/** Computes the complex roots of a new polynomial. */
template <typename OtherPolynomial>
void
compute(const OtherPolynomial& poly, bool& hasRealRoot)
{
const Scalar ZERO(0);
Scalar a2(2 * poly[2]);
assert(ZERO != poly[poly.size() - 1]);
Scalar discriminant((poly[1] * poly[1]) - (4 * poly[0] * poly[2]));
if (ZERO < discriminant) {
Scalar discriminant_root(std::sqrt(discriminant));
m_roots[0] = (-poly[1] - discriminant_root) / (a2);
m_roots[1] = (-poly[1] + discriminant_root) / (a2);
hasRealRoot = true;
}
else {
if (ZERO == discriminant) {
m_roots.resize(1);
m_roots[0] = -poly[1] / a2;
hasRealRoot = true;
}
else {
Scalar discriminant_root(std::sqrt(-discriminant));
m_roots[0] = RootType(-poly[1] / a2, -discriminant_root / a2);
m_roots[1] = RootType(-poly[1] / a2, discriminant_root / a2);
hasRealRoot = false;
}
}
}
template <typename OtherPolynomial>
void
compute(const OtherPolynomial& poly)
{
bool hasRealRoot;
compute(poly, hasRealRoot);
}
protected:
using PS_Base::m_roots;
};
} // namespace Eigen
namespace BFGSSpace {
enum Status {
NegativeGradientEpsilon = -3,
NotStarted = -2,
Running = -1,
Success = 0,
NoProgress = 1
};
}
template <typename _Scalar, int NX = Eigen::Dynamic>
struct BFGSDummyFunctor {
using Scalar = _Scalar;
enum { InputsAtCompileTime = NX };
using VectorType = Eigen::Matrix<Scalar, InputsAtCompileTime, 1>;
const int m_inputs;
BFGSDummyFunctor() : m_inputs(InputsAtCompileTime) {}
BFGSDummyFunctor(int inputs) : m_inputs(inputs) {}
virtual ~BFGSDummyFunctor() {}
int
inputs() const
{
return m_inputs;
}
virtual double
operator()(const VectorType& x) = 0;
virtual void
df(const VectorType& x, VectorType& df) = 0;
virtual void
fdf(const VectorType& x, Scalar& f, VectorType& df) = 0;
virtual BFGSSpace::Status
checkGradient(const VectorType& g)
{
return BFGSSpace::NotStarted;
};
};
/**
* BFGS stands for BroydenFletcherGoldfarbShanno (BFGS) method for solving
* unconstrained nonlinear optimization problems.
* For further details please visit: http://en.wikipedia.org/wiki/BFGS_method
* The method provided here is almost similar to the one provided by GSL.
* It reproduces Fletcher's original algorithm in Practical Methods of Optimization
* algorithms : 2.6.2 and 2.6.4 and uses the same politics in GSL with cubic
* interpolation whenever it is possible else falls to quadratic interpolation for
* alpha parameter.
*/
template <typename FunctorType>
class BFGS {
public:
using Scalar = typename FunctorType::Scalar;
using FVectorType = typename FunctorType::VectorType;
BFGS(FunctorType& _functor) : pnorm(0), g0norm(0), iter(-1), functor(_functor) {}
using Index = Eigen::DenseIndex;
struct Parameters {
Parameters()
: max_iters(400)
, bracket_iters(100)
, section_iters(100)
, rho(0.01)
, sigma(0.01)
, tau1(9)
, tau2(0.05)
, tau3(0.5)
, step_size(1)
, order(3)
{}
Index max_iters; // maximum number of function evaluation
Index bracket_iters;
Index section_iters;
Scalar rho;
Scalar sigma;
Scalar tau1;
Scalar tau2;
Scalar tau3;
Scalar step_size;
Index order;
};
BFGSSpace::Status
minimize(FVectorType& x);
BFGSSpace::Status
minimizeInit(FVectorType& x);
BFGSSpace::Status
minimizeOneStep(FVectorType& x);
BFGSSpace::Status
testGradient();
PCL_DEPRECATED(1, 13, "Use `testGradient()` instead")
BFGSSpace::Status testGradient(Scalar) { return testGradient(); }
void
resetParameters(void)
{
parameters = Parameters();
}
Parameters parameters;
Scalar f;
FVectorType gradient;
private:
BFGS&
operator=(const BFGS&);
BFGSSpace::Status
lineSearch(Scalar rho,
Scalar sigma,
Scalar tau1,
Scalar tau2,
Scalar tau3,
int order,
Scalar alpha1,
Scalar& alpha_new);
Scalar
interpolate(Scalar a,
Scalar fa,
Scalar fpa,
Scalar b,
Scalar fb,
Scalar fpb,
Scalar xmin,
Scalar xmax,
int order);
void
checkExtremum(const Eigen::Matrix<Scalar, 4, 1>& coefficients,
Scalar x,
Scalar& xmin,
Scalar& fmin);
void
moveTo(Scalar alpha);
Scalar
slope();
Scalar
applyF(Scalar alpha);
Scalar
applyDF(Scalar alpha);
void
applyFDF(Scalar alpha, Scalar& f, Scalar& df);
void
updatePosition(Scalar alpha, FVectorType& x, Scalar& f, FVectorType& g);
void
changeDirection();
Scalar delta_f, fp0;
FVectorType x0, dx0, dg0, g0, dx, p;
Scalar pnorm, g0norm;
Scalar f_alpha;
Scalar df_alpha;
FVectorType x_alpha;
FVectorType g_alpha;
// cache "keys"
Scalar f_cache_key;
Scalar df_cache_key;
Scalar x_cache_key;
Scalar g_cache_key;
Index iter;
FunctorType& functor;
};
template <typename FunctorType>
void
BFGS<FunctorType>::checkExtremum(const Eigen::Matrix<Scalar, 4, 1>& coefficients,
Scalar x,
Scalar& xmin,
Scalar& fmin)
{
Scalar y = Eigen::poly_eval(coefficients, x);
if (y < fmin) {
xmin = x;
fmin = y;
}
}
template <typename FunctorType>
void
BFGS<FunctorType>::moveTo(Scalar alpha)
{
x_alpha = x0 + alpha * p;
x_cache_key = alpha;
}
template <typename FunctorType>
typename BFGS<FunctorType>::Scalar
BFGS<FunctorType>::slope()
{
return (g_alpha.dot(p));
}
template <typename FunctorType>
typename BFGS<FunctorType>::Scalar
BFGS<FunctorType>::applyF(Scalar alpha)
{
if (alpha == f_cache_key)
return f_alpha;
moveTo(alpha);
f_alpha = functor(x_alpha);
f_cache_key = alpha;
return (f_alpha);
}
template <typename FunctorType>
typename BFGS<FunctorType>::Scalar
BFGS<FunctorType>::applyDF(Scalar alpha)
{
if (alpha == df_cache_key)
return df_alpha;
moveTo(alpha);
if (alpha != g_cache_key) {
functor.df(x_alpha, g_alpha);
g_cache_key = alpha;
}
df_alpha = slope();
df_cache_key = alpha;
return (df_alpha);
}
template <typename FunctorType>
void
BFGS<FunctorType>::applyFDF(Scalar alpha, Scalar& f, Scalar& df)
{
if (alpha == f_cache_key && alpha == df_cache_key) {
f = f_alpha;
df = df_alpha;
return;
}
if (alpha == f_cache_key || alpha == df_cache_key) {
f = applyF(alpha);
df = applyDF(alpha);
return;
}
moveTo(alpha);
functor.fdf(x_alpha, f_alpha, g_alpha);
f_cache_key = alpha;
g_cache_key = alpha;
df_alpha = slope();
df_cache_key = alpha;
f = f_alpha;
df = df_alpha;
}
template <typename FunctorType>
void
BFGS<FunctorType>::updatePosition(Scalar alpha,
FVectorType& x,
Scalar& f,
FVectorType& g)
{
{
Scalar f_alpha, df_alpha;
applyFDF(alpha, f_alpha, df_alpha);
};
f = f_alpha;
x = x_alpha;
g = g_alpha;
}
template <typename FunctorType>
void
BFGS<FunctorType>::changeDirection()
{
x_alpha = x0;
x_cache_key = 0.0;
f_cache_key = 0.0;
g_alpha = g0;
g_cache_key = 0.0;
df_alpha = slope();
df_cache_key = 0.0;
}
template <typename FunctorType>
BFGSSpace::Status
BFGS<FunctorType>::minimize(FVectorType& x)
{
BFGSSpace::Status status = minimizeInit(x);
do {
status = minimizeOneStep(x);
iter++;
} while (status == BFGSSpace::Success && iter < parameters.max_iters);
return status;
}
template <typename FunctorType>
BFGSSpace::Status
BFGS<FunctorType>::minimizeInit(FVectorType& x)
{
iter = 0;
delta_f = 0;
dx.setZero();
functor.fdf(x, f, gradient);
x0 = x;
g0 = gradient;
g0norm = g0.norm();
p = gradient * -1 / g0norm;
pnorm = p.norm();
fp0 = -g0norm;
{
x_alpha = x0;
x_cache_key = 0;
f_alpha = f;
f_cache_key = 0;
g_alpha = g0;
g_cache_key = 0;
df_alpha = slope();
df_cache_key = 0;
}
return BFGSSpace::NotStarted;
}
template <typename FunctorType>
BFGSSpace::Status
BFGS<FunctorType>::minimizeOneStep(FVectorType& x)
{
Scalar alpha = 0.0, alpha1;
Scalar f0 = f;
if (pnorm == 0.0 || g0norm == 0.0 || fp0 == 0) {
dx.setZero();
return BFGSSpace::NoProgress;
}
if (delta_f < 0) {
Scalar del =
std::max(-delta_f, 10 * std::numeric_limits<Scalar>::epsilon() * std::abs(f0));
alpha1 = std::min(1.0, 2.0 * del / (-fp0));
}
else
alpha1 = std::abs(parameters.step_size);
BFGSSpace::Status status = lineSearch(parameters.rho,
parameters.sigma,
parameters.tau1,
parameters.tau2,
parameters.tau3,
parameters.order,
alpha1,
alpha);
if (status != BFGSSpace::Success)
return status;
updatePosition(alpha, x, f, gradient);
delta_f = f - f0;
/* Choose a new direction for the next step */
{
/* This is the BFGS update: */
/* p' = g1 - A dx - B dg */
/* A = - (1+ dg.dg/dx.dg) B + dg.g/dx.dg */
/* B = dx.g/dx.dg */
Scalar dxg, dgg, dxdg, dgnorm, A, B;
/* dx0 = x - x0 */
dx0 = x - x0;
dx = dx0; /* keep a copy */
/* dg0 = g - g0 */
dg0 = gradient - g0;
dxg = dx0.dot(gradient);
dgg = dg0.dot(gradient);
dxdg = dx0.dot(dg0);
dgnorm = dg0.norm();
if (dxdg != 0) {
B = dxg / dxdg;
A = -(1.0 + dgnorm * dgnorm / dxdg) * B + dgg / dxdg;
}
else {
B = 0;
A = 0;
}
p = -A * dx0;
p += gradient;
p += -B * dg0;
}
g0 = gradient;
x0 = x;
g0norm = g0.norm();
pnorm = p.norm();
Scalar dir = ((p.dot(gradient)) > 0) ? -1.0 : 1.0;
p *= dir / pnorm;
pnorm = p.norm();
fp0 = p.dot(g0);
changeDirection();
return BFGSSpace::Success;
}
template <typename FunctorType>
typename BFGSSpace::Status
BFGS<FunctorType>::testGradient()
{
return functor.checkGradient(gradient);
}
template <typename FunctorType>
typename BFGS<FunctorType>::Scalar
BFGS<FunctorType>::interpolate(Scalar a,
Scalar fa,
Scalar fpa,
Scalar b,
Scalar fb,
Scalar fpb,
Scalar xmin,
Scalar xmax,
int order)
{
/* Map [a,b] to [0,1] */
Scalar y, alpha, ymin, ymax, fmin;
ymin = (xmin - a) / (b - a);
ymax = (xmax - a) / (b - a);
// Ensure ymin <= ymax
if (ymin > ymax) {
Scalar tmp = ymin;
ymin = ymax;
ymax = tmp;
};
if (order > 2 && !(fpb != fpa) && fpb != std::numeric_limits<Scalar>::infinity()) {
fpa = fpa * (b - a);
fpb = fpb * (b - a);
Scalar eta = 3 * (fb - fa) - 2 * fpa - fpb;
Scalar xi = fpa + fpb - 2 * (fb - fa);
Scalar c0 = fa, c1 = fpa, c2 = eta, c3 = xi;
Scalar y0, y1;
Eigen::Matrix<Scalar, 4, 1> coefficients;
coefficients << c0, c1, c2, c3;
y = ymin;
// Evaluate the cubic polyinomial at ymin;
fmin = Eigen::poly_eval(coefficients, ymin);
checkExtremum(coefficients, ymax, y, fmin);
{
// Solve quadratic polynomial for the derivate
Eigen::Matrix<Scalar, 3, 1> coefficients2;
coefficients2 << c1, 2 * c2, 3 * c3;
bool real_roots;
Eigen::PolynomialSolver<Scalar, 2> solver(coefficients2, real_roots);
if (real_roots) {
if ((solver.roots()).size() == 2) /* found 2 roots */
{
y0 = std::real(solver.roots()[0]);
y1 = std::real(solver.roots()[1]);
if (y0 > y1) {
Scalar tmp(y0);
y0 = y1;
y1 = tmp;
}
if (y0 > ymin && y0 < ymax)
checkExtremum(coefficients, y0, y, fmin);
if (y1 > ymin && y1 < ymax)
checkExtremum(coefficients, y1, y, fmin);
}
else if ((solver.roots()).size() == 1) /* found 1 root */
{
y0 = std::real(solver.roots()[0]);
if (y0 > ymin && y0 < ymax)
checkExtremum(coefficients, y0, y, fmin);
}
}
}
}
else {
fpa = fpa * (b - a);
Scalar fl = fa + ymin * (fpa + ymin * (fb - fa - fpa));
Scalar fh = fa + ymax * (fpa + ymax * (fb - fa - fpa));
Scalar c = 2 * (fb - fa - fpa); /* curvature */
y = ymin;
fmin = fl;
if (fh < fmin) {
y = ymax;
fmin = fh;
}
if (c > a) /* positive curvature required for a minimum */
{
Scalar z = -fpa / c; /* location of minimum */
if (z > ymin && z < ymax) {
Scalar f = fa + z * (fpa + z * (fb - fa - fpa));
if (f < fmin) {
y = z;
fmin = f;
};
}
}
}
alpha = a + y * (b - a);
return alpha;
}
template <typename FunctorType>
BFGSSpace::Status
BFGS<FunctorType>::lineSearch(Scalar rho,
Scalar sigma,
Scalar tau1,
Scalar tau2,
Scalar tau3,
int order,
Scalar alpha1,
Scalar& alpha_new)
{
Scalar f0, fp0, falpha, falpha_prev, fpalpha, fpalpha_prev, delta, alpha_next;
Scalar alpha = alpha1, alpha_prev = 0.0;
Scalar a, b, fa, fb, fpa, fpb;
Index i = 0;
applyFDF(0.0, f0, fp0);
falpha_prev = f0;
fpalpha_prev = fp0;
/* Avoid uninitialized variables morning */
a = 0.0;
b = alpha;
fa = f0;
fb = 0.0;
fpa = fp0;
fpb = 0.0;
/* Begin bracketing */
while (i++ < parameters.bracket_iters) {
falpha = applyF(alpha);
if (falpha > f0 + alpha * rho * fp0 || falpha >= falpha_prev) {
a = alpha_prev;
fa = falpha_prev;
fpa = fpalpha_prev;
b = alpha;
fb = falpha;
fpb = std::numeric_limits<Scalar>::quiet_NaN();
break;
}
fpalpha = applyDF(alpha);
/* Fletcher's sigma test */
if (std::abs(fpalpha) <= -sigma * fp0) {
alpha_new = alpha;
return BFGSSpace::Success;
}
if (fpalpha >= 0) {
a = alpha;
fa = falpha;
fpa = fpalpha;
b = alpha_prev;
fb = falpha_prev;
fpb = fpalpha_prev;
break; /* goto sectioning */
}
delta = alpha - alpha_prev;
{
Scalar lower = alpha + delta;
Scalar upper = alpha + tau1 * delta;
alpha_next = interpolate(alpha_prev,
falpha_prev,
fpalpha_prev,
alpha,
falpha,
fpalpha,
lower,
upper,
order);
}
alpha_prev = alpha;
falpha_prev = falpha;
fpalpha_prev = fpalpha;
alpha = alpha_next;
}
/* Sectioning of bracket [a,b] */
while (i++ < parameters.section_iters) {
delta = b - a;
{
Scalar lower = a + tau2 * delta;
Scalar upper = b - tau3 * delta;
alpha = interpolate(a, fa, fpa, b, fb, fpb, lower, upper, order);
}
falpha = applyF(alpha);
if ((a - alpha) * fpa <= std::numeric_limits<Scalar>::epsilon()) {
/* roundoff prevents progress */
return BFGSSpace::NoProgress;
};
if (falpha > f0 + rho * alpha * fp0 || falpha >= fa) {
/* a_next = a; */
b = alpha;
fb = falpha;
fpb = std::numeric_limits<Scalar>::quiet_NaN();
}
else {
fpalpha = applyDF(alpha);
if (std::abs(fpalpha) <= -sigma * fp0) {
alpha_new = alpha;
return BFGSSpace::Success; /* terminate */
}
if (((b - a) >= 0 && fpalpha >= 0) || ((b - a) <= 0 && fpalpha <= 0)) {
b = a;
fb = fa;
fpb = fpa;
a = alpha;
fa = falpha;
fpa = fpalpha;
}
else {
a = alpha;
fa = falpha;
fpa = fpalpha;
}
}
}
return BFGSSpace::Success;
}