185 lines
6.4 KiB
C
Raw Permalink Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <pcl/pcl_macros.h>
#include <pcl/recognition/hv/hypotheses_verification.h>
#include <memory>
namespace pcl
{
/**
* \brief A greedy hypothesis verification method
* \author Aitor Aldoma
*/
template<typename ModelT, typename SceneT>
class PCL_EXPORTS GreedyVerification : public HypothesisVerification<ModelT, SceneT>
{
using HypothesisVerification<ModelT, SceneT>::mask_;
using HypothesisVerification<ModelT, SceneT>::scene_cloud_downsampled_;
using HypothesisVerification<ModelT, SceneT>::scene_downsampled_tree_;
using HypothesisVerification<ModelT, SceneT>::visible_models_;
using HypothesisVerification<ModelT, SceneT>::resolution_;
using HypothesisVerification<ModelT, SceneT>::inliers_threshold_;
/*
* \brief Recognition model using during the verification
*/
class RecognitionModel
{
public:
std::vector<int> explained_;
typename pcl::PointCloud<ModelT>::Ptr cloud_;
int bad_information_;
int good_information_;
int id_;
float regularizer_;
};
using RecognitionModelPtr = std::shared_ptr<RecognitionModel>;
/*
* \brief Sorts recognition models based on the number of explained scene points and visible outliers
*/
struct sortModelsClass
{
bool
operator() (const RecognitionModelPtr & n1, const RecognitionModelPtr & n2)
{
float val1 = static_cast<float>(n1->good_information_) - static_cast<float>(n1->bad_information_) * n1->regularizer_;
float val2 = static_cast<float>(n2->good_information_) - static_cast<float>(n2->bad_information_) * n2->regularizer_;
return val1 > val2;
}
} sortModelsOp;
/*
* \brief Recognition model indices to keep track of the sorted recognition hypotheses
*/
struct modelIndices
{
int index_;
RecognitionModelPtr model_;
};
/*
* \brief Sorts model indices similar to sortModelsClass
*/
struct sortModelIndicesClass
{
bool
operator() (const modelIndices & n1, const modelIndices & n2)
{
float val1 = static_cast<float>(n1.model_->good_information_) - static_cast<float>(n1.model_->bad_information_) * n1.model_->regularizer_;
float val2 = static_cast<float>(n2.model_->good_information_) - static_cast<float>(n2.model_->bad_information_) * n2.model_->regularizer_;
return val1 > val2;
}
} sortModelsIndicesOp;
/** \brief Recognition model and indices */
std::vector<modelIndices> indices_models_;
/** \brief Recognition models (hypotheses to be verified) */
std::vector<RecognitionModelPtr> recognition_models_;
/** \brief Recognition models that explain a scene points. */
std::vector<std::vector<RecognitionModelPtr>> points_explained_by_rm_;
/** \brief Weighting for outliers */
float regularizer_;
/** \brief Initialize the data structures */
void
initialize ();
/** \brief Sorts the hypotheses for the greedy approach */
void
sortModels ()
{
indices_models_.clear ();
for (std::size_t i = 0; i < recognition_models_.size (); i++)
{
modelIndices mi;
mi.index_ = static_cast<int> (i);
mi.model_ = recognition_models_[i];
indices_models_.push_back (mi);
}
std::sort (indices_models_.begin (), indices_models_.end (), sortModelsIndicesOp);
//sort also recognition models
std::sort (recognition_models_.begin (), recognition_models_.end (), sortModelsOp);
}
/** \brief Updates conflicting recognition hypotheses when a hypothesis is accepted */
void
updateGoodInformation (int i)
{
for (std::size_t k = 0; k < recognition_models_[i]->explained_.size (); k++)
{
//update good_information_ for all hypotheses that were explaining the same points as hypothesis i
for (std::size_t kk = 0; kk < points_explained_by_rm_[recognition_models_[i]->explained_[k]].size (); kk++)
{
(points_explained_by_rm_[recognition_models_[i]->explained_[k]])[kk]->good_information_--;
(points_explained_by_rm_[recognition_models_[i]->explained_[k]])[kk]->bad_information_++;
}
}
}
public:
/** \brief Constructor
* \param[in] reg Regularizer value
**/
GreedyVerification (float reg = 1.5f) :
HypothesisVerification<ModelT, SceneT> ()
{
regularizer_ = reg;
}
/** \brief Starts verification */
void
verify () override;
};
}
#ifdef PCL_NO_PRECOMPILE
#include <pcl/recognition/impl/hv/greedy_verification.hpp>
#endif