191 lines
5.6 KiB
C
191 lines
5.6 KiB
C
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2010-2011, Willow Garage, Inc.
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of Willow Garage, Inc. nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#pragma once
|
||
|
|
|
||
|
|
#include <pcl/common/common.h>
|
||
|
|
#include <pcl/ml/feature_handler.h>
|
||
|
|
#include <pcl/ml/ferns/fern.h>
|
||
|
|
#include <pcl/ml/stats_estimator.h>
|
||
|
|
|
||
|
|
#include <vector>
|
||
|
|
|
||
|
|
namespace pcl {
|
||
|
|
|
||
|
|
/** Trainer for a Fern. */
|
||
|
|
template <class FeatureType,
|
||
|
|
class DataSet,
|
||
|
|
class LabelType,
|
||
|
|
class ExampleIndex,
|
||
|
|
class NodeType>
|
||
|
|
class PCL_EXPORTS FernTrainer {
|
||
|
|
|
||
|
|
public:
|
||
|
|
/** Constructor. */
|
||
|
|
FernTrainer();
|
||
|
|
|
||
|
|
/** Destructor. */
|
||
|
|
virtual ~FernTrainer();
|
||
|
|
|
||
|
|
/** Sets the feature handler used to create and evaluate features.
|
||
|
|
*
|
||
|
|
* \param[in] feature_handler the feature handler
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setFeatureHandler(
|
||
|
|
pcl::FeatureHandler<FeatureType, DataSet, ExampleIndex>& feature_handler)
|
||
|
|
{
|
||
|
|
feature_handler_ = &feature_handler;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** Sets the object for estimating the statistics for tree nodes.
|
||
|
|
*
|
||
|
|
* \param[in] stats_estimator the statistics estimator
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setStatsEstimator(
|
||
|
|
pcl::StatsEstimator<LabelType, NodeType, DataSet, ExampleIndex>& stats_estimator)
|
||
|
|
{
|
||
|
|
stats_estimator_ = &stats_estimator;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** Sets the maximum depth of the learned tree.
|
||
|
|
*
|
||
|
|
* \param[in] fern_depth maximum depth of the learned tree
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setFernDepth(const std::size_t fern_depth)
|
||
|
|
{
|
||
|
|
fern_depth_ = fern_depth;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** Sets the number of features used to find optimal decision features.
|
||
|
|
*
|
||
|
|
* \param[in] num_of_features the number of features
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setNumOfFeatures(const std::size_t num_of_features)
|
||
|
|
{
|
||
|
|
num_of_features_ = num_of_features;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** Sets the number of thresholds tested for finding the optimal decision
|
||
|
|
* threshold on the feature responses.
|
||
|
|
*
|
||
|
|
* \param[in] num_of_threshold the number of thresholds
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setNumOfThresholds(const std::size_t num_of_threshold)
|
||
|
|
{
|
||
|
|
num_of_thresholds_ = num_of_threshold;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** Sets the input data set used for training.
|
||
|
|
*
|
||
|
|
* \param[in] data_set the data set used for training
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setTrainingDataSet(DataSet& data_set)
|
||
|
|
{
|
||
|
|
data_set_ = data_set;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** Example indices that specify the data used for training.
|
||
|
|
*
|
||
|
|
* \param[in] examples the examples
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setExamples(std::vector<ExampleIndex>& examples)
|
||
|
|
{
|
||
|
|
examples_ = examples;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** Sets the label data corresponding to the example data.
|
||
|
|
*
|
||
|
|
* \param[in] label_data the label data
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setLabelData(std::vector<LabelType>& label_data)
|
||
|
|
{
|
||
|
|
label_data_ = label_data;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** Trains a decision tree using the set training data and settings.
|
||
|
|
*
|
||
|
|
* \param[out] fern destination for the trained tree
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
train(Fern<FeatureType, NodeType>& fern);
|
||
|
|
|
||
|
|
protected:
|
||
|
|
/** Creates uniformely distrebuted thresholds over the range of the supplied
|
||
|
|
* values.
|
||
|
|
*
|
||
|
|
* \param[in] num_of_thresholds the number of thresholds to create
|
||
|
|
* \param[in] values the values for estimating the expected value range
|
||
|
|
* \param[out] thresholds the resulting thresholds
|
||
|
|
*/
|
||
|
|
static void
|
||
|
|
createThresholdsUniform(const std::size_t num_of_thresholds,
|
||
|
|
std::vector<float>& values,
|
||
|
|
std::vector<float>& thresholds);
|
||
|
|
|
||
|
|
private:
|
||
|
|
/** Desired depth of the learned fern. */
|
||
|
|
std::size_t fern_depth_;
|
||
|
|
/** Number of features used to find optimal decision features. */
|
||
|
|
std::size_t num_of_features_;
|
||
|
|
/** Number of thresholds. */
|
||
|
|
std::size_t num_of_thresholds_;
|
||
|
|
|
||
|
|
/** FeatureHandler instance, responsible for creating and evaluating features. */
|
||
|
|
pcl::FeatureHandler<FeatureType, DataSet, ExampleIndex>* feature_handler_;
|
||
|
|
/** StatsEstimator instance, responsible for gathering stats about a node. */
|
||
|
|
pcl::StatsEstimator<LabelType, NodeType, DataSet, ExampleIndex>* stats_estimator_;
|
||
|
|
|
||
|
|
/** The training data set. */
|
||
|
|
DataSet data_set_;
|
||
|
|
/** The label data. */
|
||
|
|
std::vector<LabelType> label_data_;
|
||
|
|
/** The example data. */
|
||
|
|
std::vector<ExampleIndex> examples_;
|
||
|
|
};
|
||
|
|
|
||
|
|
} // namespace pcl
|
||
|
|
|
||
|
|
#include <pcl/ml/impl/ferns/fern_trainer.hpp>
|