487 lines
17 KiB
C
Raw Permalink Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (C) 2011, The Autonomous Systems Lab (ASL), ETH Zurich,
* Stefan Leutenegger, Simon Lynen and Margarita Chli.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#pragma once
#include <pcl/common/point_tests.h> // for pcl::isFinite
#include <pcl/keypoints/agast_2d.h>
namespace pcl
{
/** \brief Detects BRISK interest points based on the original code and paper
* reference by
*
* \par
* Stefan Leutenegger,Margarita Chli and Roland Siegwart,
* BRISK: Binary Robust Invariant Scalable Keypoints,
* in Proceedings of the IEEE International Conference on Computer Vision (ICCV2011).
*
* Code example:
*
* \code
* pcl::PointCloud<pcl::PointXYZRGBA> cloud;
* pcl::BriskKeypoint2D<pcl::PointXYZRGBA> brisk;
* brisk.setThreshold (60);
* brisk.setOctaves (4);
* brisk.setInputCloud (cloud);
*
* PointCloud<pcl::PointWithScale> keypoints;
* brisk.compute (keypoints);
* \endcode
*
* \author Radu B. Rusu, Stefan Holzer
* \ingroup keypoints
*/
template <typename PointInT, typename PointOutT = pcl::PointWithScale, typename IntensityT = pcl::common::IntensityFieldAccessor<PointInT> >
class BriskKeypoint2D: public Keypoint<PointInT, PointOutT>
{
public:
using Ptr = shared_ptr<BriskKeypoint2D<PointInT, PointOutT, IntensityT> >;
using ConstPtr = shared_ptr<const BriskKeypoint2D<PointInT, PointOutT, IntensityT> >;
using PointCloudIn = typename Keypoint<PointInT, PointOutT>::PointCloudIn;
using PointCloudOut = typename Keypoint<PointInT, PointOutT>::PointCloudOut;
using KdTree = typename Keypoint<PointInT, PointOutT>::KdTree;
using PointCloudInConstPtr = typename PointCloudIn::ConstPtr;
using Keypoint<PointInT, PointOutT>::name_;
using Keypoint<PointInT, PointOutT>::input_;
using Keypoint<PointInT, PointOutT>::indices_;
using Keypoint<PointInT, PointOutT>::k_;
/** \brief Constructor */
BriskKeypoint2D (int octaves = 4, int threshold = 60)
: threshold_ (threshold)
, octaves_ (octaves)
, remove_invalid_3D_keypoints_ (false)
{
k_ = 1;
name_ = "BriskKeypoint2D";
}
/** \brief Destructor. */
~BriskKeypoint2D ()
{
}
/** \brief Sets the threshold for corner detection.
* \param[in] threshold the threshold used for corner detection.
*/
inline void
setThreshold (const int threshold)
{
threshold_ = threshold;
}
/** \brief Get the threshold for corner detection, as set by the user. */
inline std::size_t
getThreshold ()
{
return (threshold_);
}
/** \brief Set the number of octaves to use
* \param[in] octaves the number of octaves to use
*/
inline void
setOctaves (const int octaves)
{
octaves_ = octaves;
}
/** \brief Returns the number of octaves used. */
inline int
getOctaves ()
{
return (octaves_);
}
/** \brief Specify whether we should do a 2nd pass through the list of keypoints
* found, and remove the ones that do not have a valid 3D (x-y-z) position
* (i.e., are NaN or Inf).
* \param[in] remove set to true whether we want the invalid 3D keypoints removed
*/
inline void
setRemoveInvalid3DKeypoints (bool remove)
{
remove_invalid_3D_keypoints_ = remove;
}
/** \brief Specify whether the keypoints that do not have a valid 3D position are
* kept (false) or removed (true).
*/
inline bool
getRemoveInvalid3DKeypoints ()
{
return (remove_invalid_3D_keypoints_);
}
/////////////////////////////////////////////////////////////////////////
inline void
bilinearInterpolation (const PointCloudInConstPtr &cloud,
float x, float y,
PointOutT &pt)
{
int u = int (x);
int v = int (y);
pt.x = pt.y = pt.z = 0;
const PointInT &p1 = (*cloud)(u, v);
const PointInT &p2 = (*cloud)(u+1, v);
const PointInT &p3 = (*cloud)(u, v+1);
const PointInT &p4 = (*cloud)(u+1, v+1);
float fx = x - float (u), fy = y - float (v);
float fx1 = 1.0f - fx, fy1 = 1.0f - fy;
float w1 = fx1 * fy1, w2 = fx * fy1, w3 = fx1 * fy, w4 = fx * fy;
float weight = 0;
if (pcl::isFinite (p1))
{
pt.x += p1.x * w1;
pt.y += p1.y * w1;
pt.z += p1.z * w1;
weight += w1;
}
if (pcl::isFinite (p2))
{
pt.x += p2.x * w2;
pt.y += p2.y * w2;
pt.z += p2.z * w2;
weight += w2;
}
if (pcl::isFinite (p3))
{
pt.x += p3.x * w3;
pt.y += p3.y * w3;
pt.z += p3.z * w3;
weight += w3;
}
if (pcl::isFinite (p4))
{
pt.x += p4.x * w4;
pt.y += p4.y * w4;
pt.z += p4.z * w4;
weight += w4;
}
if (weight == 0)
pt.x = pt.y = pt.z = std::numeric_limits<float>::quiet_NaN ();
else
{
weight = 1.0f / weight;
pt.x *= weight; pt.y *= weight; pt.z *= weight;
}
}
protected:
/** \brief Initializes everything and checks whether input data is fine. */
bool
initCompute () override;
/** \brief Detects the keypoints. */
void
detectKeypoints (PointCloudOut &output) override;
private:
/** \brief Intensity field accessor. */
IntensityT intensity_;
/** \brief Threshold for corner detection. */
int threshold_;
int octaves_;
/** \brief Specify whether the keypoints that do not have a valid 3D position are
* kept (false) or removed (true).
*/
bool remove_invalid_3D_keypoints_;
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
namespace keypoints
{
namespace brisk
{
/** \brief A layer in the BRISK detector pyramid. */
class PCL_EXPORTS Layer
{
public:
// constructor arguments
struct CommonParams
{
static const int HALFSAMPLE;
static const int TWOTHIRDSAMPLE;
};
/** \brief Constructor.
* \param[in] img input image
* \param[in] width image width
* \param[in] height image height
* \param[in] scale scale
* \param[in] offset offset
*/
Layer (const std::vector<unsigned char>& img,
int width, int height,
float scale = 1.0f, float offset = 0.0f);
/** \brief Copy constructor for deriving a layer.
* \param[in] layer layer to derive from
* \param[in] mode deriving mode
*/
Layer (const Layer& layer, int mode);
/** \brief AGAST keypoints without non-max suppression.
* \param[in] threshold the keypoints threshold
* \param[out] keypoints the AGAST keypoints
*/
void
getAgastPoints (std::uint8_t threshold, std::vector<pcl::PointUV, Eigen::aligned_allocator<pcl::PointUV> > &keypoints);
// get scores - attention, this is in layer coordinates, not scale=1 coordinates!
/** \brief Get the AGAST keypoint score for a given pixel using a threshold
* \param[in] x the U coordinate of the pixel
* \param[in] y the V coordinate of the pixel
* \param[in] threshold the threshold to use for cutting the response
*/
std::uint8_t
getAgastScore (int x, int y, std::uint8_t threshold);
/** \brief Get the AGAST keypoint score for a given pixel using a threshold
* \param[in] x the U coordinate of the pixel
* \param[in] y the V coordinate of the pixel
* \param[in] threshold the threshold to use for cutting the response
*/
std::uint8_t
getAgastScore_5_8 (int x, int y, std::uint8_t threshold);
/** \brief Get the AGAST keypoint score for a given pixel using a threshold
* \param[in] xf the X coordinate of the pixel
* \param[in] yf the Y coordinate of the pixel
* \param[in] threshold the threshold to use for cutting the response
* \param[in] scale the scale
*/
std::uint8_t
getAgastScore (float xf, float yf, std::uint8_t threshold, float scale = 1.0f);
/** \brief Access gray values (smoothed/interpolated)
* \param[in] mat the image
* \param[in] width the image width
* \param[in] height the image height
* \param[in] xf the x coordinate
* \param[in] yf the y coordinate
* \param[in] scale the scale
*/
std::uint8_t
getValue (const std::vector<unsigned char>& mat,
int width, int height, float xf, float yf, float scale);
/** \brief Get the image used. */
const std::vector<unsigned char>&
getImage () const
{
return (img_);
}
/** \brief Get the width of the image used. */
int
getImageWidth () const
{
return (img_width_);
}
/** \brief Get the height of the image used. */
int
getImageHeight () const
{
return (img_height_);
}
/** \brief Get the scale used. */
float
getScale () const
{
return (scale_);
}
/** \brief Get the offset used. */
inline float
getOffset () const
{
return (offset_);
}
/** \brief Get the scores obtained. */
inline const std::vector<unsigned char>&
getScores () const
{
return (scores_);
}
private:
// half sampling
inline void
halfsample (const std::vector<unsigned char>& srcimg,
int srcwidth, int srcheight,
std::vector<unsigned char>& dstimg,
int dstwidth, int dstheight);
// two third sampling
inline void
twothirdsample (const std::vector<unsigned char>& srcimg,
int srcwidth, int srcheight,
std::vector<unsigned char>& dstimg,
int dstwidth, int dstheight);
/** the image */
std::vector<unsigned char> img_;
int img_width_;
int img_height_;
/** its Fast scores */
std::vector<unsigned char> scores_;
/** coordinate transformation */
float scale_;
float offset_;
/** agast */
pcl::keypoints::agast::OastDetector9_16::Ptr oast_detector_;
pcl::keypoints::agast::AgastDetector5_8::Ptr agast_detector_5_8_;
};
/** BRISK Scale Space helper. */
class PCL_EXPORTS ScaleSpace
{
public:
/** \brief Constructor. Specify the number of octaves.
* \param[in] octaves the number of octaves (default: 3)
*/
ScaleSpace (int octaves = 3);
~ScaleSpace ();
/** \brief Construct the image pyramids.
* \param[in] image the image to construct pyramids for
* \param[in] width the image width
* \param[in] height the image height
*/
void
constructPyramid (const std::vector<unsigned char>& image,
int width, int height);
/** \brief Get the keypoints for the associated image and threshold.
* \param[in] threshold the threshold for the keypoints
* \param[out] keypoints the resultant list of keypoints
*/
void
getKeypoints (const int threshold,
std::vector<pcl::PointWithScale, Eigen::aligned_allocator<pcl::PointWithScale> > &keypoints);
protected:
/** Nonmax suppression. */
inline bool
isMax2D (const std::uint8_t layer, const int x_layer, const int y_layer);
/** 1D (scale axis) refinement: around octave */
inline float
refine1D (const float s_05, const float s0, const float s05, float& max);
/** 1D (scale axis) refinement: around intra */
inline float
refine1D_1 (const float s_05, const float s0, const float s05, float& max);
/** 1D (scale axis) refinement: around octave 0 only */
inline float
refine1D_2 (const float s_05, const float s0, const float s05, float& max);
/** 2D maximum refinement */
inline float
subpixel2D (const int s_0_0, const int s_0_1, const int s_0_2,
const int s_1_0, const int s_1_1, const int s_1_2,
const int s_2_0, const int s_2_1, const int s_2_2,
float& delta_x, float& delta_y);
/** 3D maximum refinement centered around (x_layer,y_layer) */
inline float
refine3D (const std::uint8_t layer,
const int x_layer, const int y_layer,
float& x, float& y, float& scale, bool& ismax);
/** interpolated score access with recalculation when needed */
inline int
getScoreAbove (const std::uint8_t layer, const int x_layer, const int y_layer);
inline int
getScoreBelow (const std::uint8_t layer, const int x_layer, const int y_layer);
/** return the maximum of score patches above or below */
inline float
getScoreMaxAbove (const std::uint8_t layer,
const int x_layer, const int y_layer,
const int threshold, bool& ismax,
float& dx, float& dy);
inline float
getScoreMaxBelow (const std::uint8_t layer,
const int x_layer, const int y_layer,
const int threshold, bool& ismax,
float& dx, float& dy);
// the image pyramids
std::uint8_t layers_;
std::vector<pcl::keypoints::brisk::Layer> pyramid_;
// Agast
std::uint8_t threshold_;
std::uint8_t safe_threshold_;
// some constant parameters
float safety_factor_;
float basic_size_;
};
} // namespace brisk
} // namespace keypoints
}
#include <pcl/keypoints/impl/brisk_2d.hpp>