316 lines
11 KiB
C
316 lines
11 KiB
C
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2010-2012, Willow Garage, Inc.
|
||
|
|
* Copyright (c) 2012-, Open Perception, Inc.
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* $Id: kdtree_flann.h 36261 2011-02-26 01:34:42Z mariusm $
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#pragma once
|
||
|
|
|
||
|
|
#include <pcl/kdtree/kdtree.h>
|
||
|
|
#include <flann/util/params.h>
|
||
|
|
|
||
|
|
#include <memory>
|
||
|
|
|
||
|
|
// Forward declarations
|
||
|
|
namespace flann
|
||
|
|
{
|
||
|
|
template <typename T> struct L2_Simple;
|
||
|
|
template <typename T> class Index;
|
||
|
|
}
|
||
|
|
|
||
|
|
namespace pcl
|
||
|
|
{
|
||
|
|
namespace detail {
|
||
|
|
// Helper struct to create a compatible Matrix and copy data back when needed
|
||
|
|
// Replace using if constexpr in C++17
|
||
|
|
template <typename IndexT>
|
||
|
|
struct compat_with_flann : std::false_type {};
|
||
|
|
|
||
|
|
template <>
|
||
|
|
struct compat_with_flann<std::size_t> : std::true_type {};
|
||
|
|
|
||
|
|
template <typename IndexT>
|
||
|
|
using CompatWithFlann = std::enable_if_t<compat_with_flann<IndexT>::value, bool>;
|
||
|
|
template <typename IndexT>
|
||
|
|
using NotCompatWithFlann = std::enable_if_t<!compat_with_flann<IndexT>::value, bool>;
|
||
|
|
} // namespace detail
|
||
|
|
|
||
|
|
/**
|
||
|
|
* @brief Comaptibility template function to allow use of various types of indices with
|
||
|
|
* FLANN
|
||
|
|
* @details Template is used for all params to not constrain any FLANN side capability
|
||
|
|
* @param[in|out] index A index searcher, of type ::flann::Index<Dist> or similar, where
|
||
|
|
* Dist is a template for computing distance between 2 points
|
||
|
|
* @param[in] query A ::flann::Matrix<float> or compatible matrix representation of the
|
||
|
|
* query point
|
||
|
|
* @param[out] indices Indices found in radius
|
||
|
|
* @param[out] dists Computed distance matrix
|
||
|
|
* @param[in] radius Threshold for consideration
|
||
|
|
* @param[in] params Any parameters to pass to the radius_search call
|
||
|
|
*/
|
||
|
|
template <class FlannIndex,
|
||
|
|
class Query,
|
||
|
|
class Indices,
|
||
|
|
class Distances,
|
||
|
|
class SearchParams>
|
||
|
|
int
|
||
|
|
radius_search(const FlannIndex& index,
|
||
|
|
const Query& query,
|
||
|
|
Indices& indices,
|
||
|
|
Distances& dists,
|
||
|
|
float radius,
|
||
|
|
const SearchParams& params);
|
||
|
|
|
||
|
|
/**
|
||
|
|
* @brief Comaptibility template function to allow use of various types of indices with
|
||
|
|
* FLANN
|
||
|
|
* @details Template is used for all params to not constrain any FLANN side capability
|
||
|
|
* @param[in|out] index A index searcher, of type ::flann::Index<Dist> or similar, where
|
||
|
|
* Dist is a template for computing distance between 2 points
|
||
|
|
* @param[in] query A ::flann::Matrix<float> or compatible matrix representation of the
|
||
|
|
* query point
|
||
|
|
* @param[out] indices Neighboring k indices found
|
||
|
|
* @param[out] dists Computed distance matrix
|
||
|
|
* @param[in] radius Threshold for consideration
|
||
|
|
* @param[in] params Any parameters to pass to the radius_search call
|
||
|
|
*/
|
||
|
|
template <class FlannIndex,
|
||
|
|
class Query,
|
||
|
|
class Indices,
|
||
|
|
class Distances,
|
||
|
|
class SearchParams>
|
||
|
|
int
|
||
|
|
knn_search(const FlannIndex& index,
|
||
|
|
const Query& query,
|
||
|
|
Indices& indices,
|
||
|
|
Distances& dists,
|
||
|
|
unsigned int k,
|
||
|
|
const SearchParams& params);
|
||
|
|
|
||
|
|
/** \brief KdTreeFLANN is a generic type of 3D spatial locator using kD-tree structures.
|
||
|
|
* The class is making use of the FLANN (Fast Library for Approximate Nearest Neighbor)
|
||
|
|
* project by Marius Muja and David Lowe.
|
||
|
|
*
|
||
|
|
* \author Radu B. Rusu, Marius Muja
|
||
|
|
* \ingroup kdtree
|
||
|
|
*/
|
||
|
|
template <typename PointT, typename Dist = ::flann::L2_Simple<float>>
|
||
|
|
class KdTreeFLANN : public pcl::KdTree<PointT> {
|
||
|
|
public:
|
||
|
|
using KdTree<PointT>::input_;
|
||
|
|
using KdTree<PointT>::indices_;
|
||
|
|
using KdTree<PointT>::epsilon_;
|
||
|
|
using KdTree<PointT>::sorted_;
|
||
|
|
using KdTree<PointT>::point_representation_;
|
||
|
|
using KdTree<PointT>::nearestKSearch;
|
||
|
|
using KdTree<PointT>::radiusSearch;
|
||
|
|
|
||
|
|
using PointCloud = typename KdTree<PointT>::PointCloud;
|
||
|
|
using PointCloudConstPtr = typename KdTree<PointT>::PointCloudConstPtr;
|
||
|
|
|
||
|
|
using IndicesPtr = shared_ptr<Indices>;
|
||
|
|
using IndicesConstPtr = shared_ptr<const Indices>;
|
||
|
|
|
||
|
|
using FLANNIndex = ::flann::Index<Dist>;
|
||
|
|
|
||
|
|
// Boost shared pointers
|
||
|
|
using Ptr = shared_ptr<KdTreeFLANN<PointT, Dist>>;
|
||
|
|
using ConstPtr = shared_ptr<const KdTreeFLANN<PointT, Dist>>;
|
||
|
|
|
||
|
|
/** \brief Default Constructor for KdTreeFLANN.
|
||
|
|
* \param[in] sorted set to true if the application that the tree will be used for
|
||
|
|
* requires sorted nearest neighbor indices (default). False otherwise.
|
||
|
|
*
|
||
|
|
* By setting sorted to false, the \ref radiusSearch operations will be faster.
|
||
|
|
*/
|
||
|
|
KdTreeFLANN(bool sorted = true);
|
||
|
|
|
||
|
|
/** \brief Copy constructor
|
||
|
|
* \param[in] k the tree to copy into this
|
||
|
|
*/
|
||
|
|
KdTreeFLANN(const KdTreeFLANN<PointT, Dist>& k);
|
||
|
|
|
||
|
|
/** \brief Copy operator
|
||
|
|
* \param[in] k the tree to copy into this
|
||
|
|
*/
|
||
|
|
inline KdTreeFLANN<PointT, Dist>&
|
||
|
|
operator=(const KdTreeFLANN<PointT, Dist>& k)
|
||
|
|
{
|
||
|
|
KdTree<PointT>::operator=(k);
|
||
|
|
flann_index_ = k.flann_index_;
|
||
|
|
cloud_ = k.cloud_;
|
||
|
|
index_mapping_ = k.index_mapping_;
|
||
|
|
identity_mapping_ = k.identity_mapping_;
|
||
|
|
dim_ = k.dim_;
|
||
|
|
total_nr_points_ = k.total_nr_points_;
|
||
|
|
param_k_ = k.param_k_;
|
||
|
|
param_radius_ = k.param_radius_;
|
||
|
|
return (*this);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Set the search epsilon precision (error bound) for nearest neighbors
|
||
|
|
* searches. \param[in] eps precision (error bound) for nearest neighbors searches
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
setEpsilon(float eps) override;
|
||
|
|
|
||
|
|
void
|
||
|
|
setSortedResults(bool sorted);
|
||
|
|
|
||
|
|
inline Ptr
|
||
|
|
makeShared()
|
||
|
|
{
|
||
|
|
return Ptr(new KdTreeFLANN<PointT, Dist>(*this));
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Destructor for KdTreeFLANN.
|
||
|
|
* Deletes all allocated data arrays and destroys the kd-tree structures.
|
||
|
|
*/
|
||
|
|
~KdTreeFLANN() { cleanup(); }
|
||
|
|
|
||
|
|
/** \brief Provide a pointer to the input dataset.
|
||
|
|
* \param[in] cloud the const boost shared pointer to a PointCloud message
|
||
|
|
* \param[in] indices the point indices subset that is to be used from \a cloud - if
|
||
|
|
* NULL the whole cloud is used
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
setInputCloud(const PointCloudConstPtr& cloud,
|
||
|
|
const IndicesConstPtr& indices = IndicesConstPtr()) override;
|
||
|
|
|
||
|
|
/** \brief Search for k-nearest neighbors for the given query point.
|
||
|
|
*
|
||
|
|
* \attention This method does not do any bounds checking for the input index
|
||
|
|
* (i.e., index >= cloud.size () || index < 0), and assumes valid (i.e., finite) data.
|
||
|
|
*
|
||
|
|
* \param[in] point a given \a valid (i.e., finite) query point
|
||
|
|
* \param[in] k the number of neighbors to search for
|
||
|
|
* \param[out] k_indices the resultant indices of the neighboring points (must be
|
||
|
|
* resized to \a k a priori!) \param[out] k_sqr_distances the resultant squared
|
||
|
|
* distances to the neighboring points (must be resized to \a k a priori!) \return
|
||
|
|
* number of neighbors found
|
||
|
|
*
|
||
|
|
* \exception asserts in debug mode if the index is not between 0 and the maximum
|
||
|
|
* number of points
|
||
|
|
*/
|
||
|
|
int
|
||
|
|
nearestKSearch(const PointT& point,
|
||
|
|
unsigned int k,
|
||
|
|
Indices& k_indices,
|
||
|
|
std::vector<float>& k_sqr_distances) const override;
|
||
|
|
|
||
|
|
/** \brief Search for all the nearest neighbors of the query point in a given radius.
|
||
|
|
*
|
||
|
|
* \attention This method does not do any bounds checking for the input index
|
||
|
|
* (i.e., index >= cloud.size () || index < 0), and assumes valid (i.e., finite) data.
|
||
|
|
*
|
||
|
|
* \param[in] point a given \a valid (i.e., finite) query point
|
||
|
|
* \param[in] radius the radius of the sphere bounding all of p_q's neighbors
|
||
|
|
* \param[out] k_indices the resultant indices of the neighboring points
|
||
|
|
* \param[out] k_sqr_distances the resultant squared distances to the neighboring
|
||
|
|
* points \param[in] max_nn if given, bounds the maximum returned neighbors to this
|
||
|
|
* value. If \a max_nn is set to 0 or to a number higher than the number of points in
|
||
|
|
* the input cloud, all neighbors in \a radius will be returned. \return number of
|
||
|
|
* neighbors found in radius
|
||
|
|
*
|
||
|
|
* \exception asserts in debug mode if the index is not between 0 and the maximum
|
||
|
|
* number of points
|
||
|
|
*/
|
||
|
|
int
|
||
|
|
radiusSearch(const PointT& point,
|
||
|
|
double radius,
|
||
|
|
Indices& k_indices,
|
||
|
|
std::vector<float>& k_sqr_distances,
|
||
|
|
unsigned int max_nn = 0) const override;
|
||
|
|
|
||
|
|
private:
|
||
|
|
/** \brief Internal cleanup method. */
|
||
|
|
void
|
||
|
|
cleanup();
|
||
|
|
|
||
|
|
/** \brief Converts a PointCloud to the internal FLANN point array representation.
|
||
|
|
* Returns the number of points. \param cloud the PointCloud
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
convertCloudToArray(const PointCloud& cloud);
|
||
|
|
|
||
|
|
/** \brief Converts a PointCloud with a given set of indices to the internal FLANN
|
||
|
|
* point array representation. Returns the number of points. \param[in] cloud the
|
||
|
|
* PointCloud data \param[in] indices the point cloud indices
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
convertCloudToArray(const PointCloud& cloud, const Indices& indices);
|
||
|
|
|
||
|
|
private:
|
||
|
|
/** \brief Class getName method. */
|
||
|
|
std::string
|
||
|
|
getName() const override
|
||
|
|
{
|
||
|
|
return ("KdTreeFLANN");
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief A FLANN index object. */
|
||
|
|
std::shared_ptr<FLANNIndex> flann_index_;
|
||
|
|
|
||
|
|
/** \brief Internal pointer to data. TODO: replace with std::shared_ptr<float[]> with
|
||
|
|
* C++17*/
|
||
|
|
std::shared_ptr<float> cloud_;
|
||
|
|
|
||
|
|
/** \brief mapping between internal and external indices. */
|
||
|
|
std::vector<int> index_mapping_;
|
||
|
|
|
||
|
|
/** \brief whether the mapping between internal and external indices is identity */
|
||
|
|
bool identity_mapping_;
|
||
|
|
|
||
|
|
/** \brief Tree dimensionality (i.e. the number of dimensions per point). */
|
||
|
|
int dim_;
|
||
|
|
|
||
|
|
/** \brief The total size of the data (either equal to the number of points in the
|
||
|
|
* input cloud or to the number of indices - if passed). */
|
||
|
|
uindex_t total_nr_points_;
|
||
|
|
|
||
|
|
/** \brief The KdTree search parameters for K-nearest neighbors. */
|
||
|
|
::flann::SearchParams param_k_;
|
||
|
|
|
||
|
|
/** \brief The KdTree search parameters for radius search. */
|
||
|
|
::flann::SearchParams param_radius_;
|
||
|
|
};
|
||
|
|
}
|
||
|
|
|
||
|
|
#ifdef PCL_NO_PRECOMPILE
|
||
|
|
#include <pcl/kdtree/impl/kdtree_flann.hpp>
|
||
|
|
#endif
|