181 lines
8.0 KiB
C++
181 lines
8.0 KiB
C++
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2012-, Open Perception, Inc.
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#ifndef PCL_FEATURES_IMPL_PPFRGB_H_
|
||
|
|
#define PCL_FEATURES_IMPL_PPFRGB_H_
|
||
|
|
|
||
|
|
#include <pcl/features/ppfrgb.h>
|
||
|
|
#include <pcl/features/pfhrgb.h>
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template <typename PointInT, typename PointNT, typename PointOutT>
|
||
|
|
pcl::PPFRGBEstimation<PointInT, PointNT, PointOutT>::PPFRGBEstimation ()
|
||
|
|
: FeatureFromNormals <PointInT, PointNT, PointOutT> ()
|
||
|
|
{
|
||
|
|
feature_name_ = "PPFRGBEstimation";
|
||
|
|
// Slight hack in order to pass the check for the presence of a search method in Feature::initCompute ()
|
||
|
|
Feature<PointInT, PointOutT>::tree_.reset (new pcl::search::KdTree <PointInT> ());
|
||
|
|
Feature<PointInT, PointOutT>::search_radius_ = 1.0f;
|
||
|
|
}
|
||
|
|
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template <typename PointInT, typename PointNT, typename PointOutT> void
|
||
|
|
pcl::PPFRGBEstimation<PointInT, PointNT, PointOutT>::computeFeature (PointCloudOut &output)
|
||
|
|
{
|
||
|
|
// Initialize output container - overwrite the sizes done by Feature::initCompute ()
|
||
|
|
output.resize (indices_->size () * input_->size ());
|
||
|
|
output.height = 1;
|
||
|
|
output.width = output.size ();
|
||
|
|
|
||
|
|
// Compute point pair features for every pair of points in the cloud
|
||
|
|
for (std::size_t index_i = 0; index_i < indices_->size (); ++index_i)
|
||
|
|
{
|
||
|
|
std::size_t i = (*indices_)[index_i];
|
||
|
|
for (std::size_t j = 0 ; j < input_->size (); ++j)
|
||
|
|
{
|
||
|
|
PointOutT p;
|
||
|
|
if (i != j)
|
||
|
|
{
|
||
|
|
if (pcl::computeRGBPairFeatures
|
||
|
|
((*input_)[i].getVector4fMap (), (*normals_)[i].getNormalVector4fMap (), (*input_)[i].getRGBVector4i (),
|
||
|
|
(*input_)[j].getVector4fMap (), (*normals_)[j].getNormalVector4fMap (), (*input_)[j].getRGBVector4i (),
|
||
|
|
p.f1, p.f2, p.f3, p.f4, p.r_ratio, p.g_ratio, p.b_ratio))
|
||
|
|
{
|
||
|
|
// Calculate alpha_m angle
|
||
|
|
Eigen::Vector3f model_reference_point = (*input_)[i].getVector3fMap (),
|
||
|
|
model_reference_normal = (*normals_)[i].getNormalVector3fMap (),
|
||
|
|
model_point = (*input_)[j].getVector3fMap ();
|
||
|
|
Eigen::AngleAxisf rotation_mg (std::acos (model_reference_normal.dot (Eigen::Vector3f::UnitX ())),
|
||
|
|
model_reference_normal.cross (Eigen::Vector3f::UnitX ()).normalized ());
|
||
|
|
Eigen::Affine3f transform_mg = Eigen::Translation3f ( rotation_mg * ((-1) * model_reference_point)) * rotation_mg;
|
||
|
|
|
||
|
|
Eigen::Vector3f model_point_transformed = transform_mg * model_point;
|
||
|
|
float angle = std::atan2 ( -model_point_transformed(2), model_point_transformed(1));
|
||
|
|
if (std::sin (angle) * model_point_transformed(2) < 0.0f)
|
||
|
|
angle *= (-1);
|
||
|
|
p.alpha_m = -angle;
|
||
|
|
}
|
||
|
|
else
|
||
|
|
{
|
||
|
|
PCL_ERROR ("[pcl::%s::computeFeature] Computing pair feature vector between points %lu and %lu went wrong.\n", getClassName ().c_str (), i, j);
|
||
|
|
p.f1 = p.f2 = p.f3 = p.f4 = p.alpha_m = p.r_ratio = p.g_ratio = p.b_ratio = 0.f;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
// Do not calculate the feature for identity pairs (i, i) as they are not used
|
||
|
|
// in the following computations
|
||
|
|
else
|
||
|
|
p.f1 = p.f2 = p.f3 = p.f4 = p.alpha_m = p.r_ratio = p.g_ratio = p.b_ratio = 0.f;
|
||
|
|
|
||
|
|
output[index_i*input_->size () + j] = p;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template <typename PointInT, typename PointNT, typename PointOutT>
|
||
|
|
pcl::PPFRGBRegionEstimation<PointInT, PointNT, PointOutT>::PPFRGBRegionEstimation ()
|
||
|
|
: FeatureFromNormals <PointInT, PointNT, PointOutT> ()
|
||
|
|
{
|
||
|
|
feature_name_ = "PPFRGBEstimation";
|
||
|
|
}
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template <typename PointInT, typename PointNT, typename PointOutT> void
|
||
|
|
pcl::PPFRGBRegionEstimation<PointInT, PointNT, PointOutT>::computeFeature (PointCloudOut &output)
|
||
|
|
{
|
||
|
|
PCL_INFO ("before computing output size: %u\n", output.size ());
|
||
|
|
output.resize (indices_->size ());
|
||
|
|
for (std::size_t index_i = 0; index_i < indices_->size (); ++index_i)
|
||
|
|
{
|
||
|
|
auto i = (*indices_)[index_i];
|
||
|
|
pcl::Indices nn_indices;
|
||
|
|
std::vector<float> nn_distances;
|
||
|
|
tree_->radiusSearch (i, static_cast<float> (search_radius_), nn_indices, nn_distances);
|
||
|
|
|
||
|
|
PointOutT average_feature_nn;
|
||
|
|
average_feature_nn.alpha_m = 0;
|
||
|
|
average_feature_nn.f1 = average_feature_nn.f2 = average_feature_nn.f3 = average_feature_nn.f4 =
|
||
|
|
average_feature_nn.r_ratio = average_feature_nn.g_ratio = average_feature_nn.b_ratio = 0.0f;
|
||
|
|
|
||
|
|
for (const auto &j : nn_indices)
|
||
|
|
{
|
||
|
|
if (i != j)
|
||
|
|
{
|
||
|
|
float f1, f2, f3, f4, r_ratio, g_ratio, b_ratio;
|
||
|
|
if (pcl::computeRGBPairFeatures
|
||
|
|
((*input_)[i].getVector4fMap (), (*normals_)[i].getNormalVector4fMap (), (*input_)[i].getRGBVector4i (),
|
||
|
|
(*input_)[j].getVector4fMap (), (*normals_)[j].getNormalVector4fMap (), (*input_)[j].getRGBVector4i (),
|
||
|
|
f1, f2, f3, f4, r_ratio, g_ratio, b_ratio))
|
||
|
|
{
|
||
|
|
average_feature_nn.f1 += f1;
|
||
|
|
average_feature_nn.f2 += f2;
|
||
|
|
average_feature_nn.f3 += f3;
|
||
|
|
average_feature_nn.f4 += f4;
|
||
|
|
average_feature_nn.r_ratio += r_ratio;
|
||
|
|
average_feature_nn.g_ratio += g_ratio;
|
||
|
|
average_feature_nn.b_ratio += b_ratio;
|
||
|
|
}
|
||
|
|
else
|
||
|
|
{
|
||
|
|
PCL_ERROR ("[pcl::%s::computeFeature] Computing pair feature vector between points %lu and %lu went wrong.\n", getClassName ().c_str (), i, j);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
float normalization_factor = static_cast<float> (nn_indices.size ());
|
||
|
|
average_feature_nn.f1 /= normalization_factor;
|
||
|
|
average_feature_nn.f2 /= normalization_factor;
|
||
|
|
average_feature_nn.f3 /= normalization_factor;
|
||
|
|
average_feature_nn.f4 /= normalization_factor;
|
||
|
|
average_feature_nn.r_ratio /= normalization_factor;
|
||
|
|
average_feature_nn.g_ratio /= normalization_factor;
|
||
|
|
average_feature_nn.b_ratio /= normalization_factor;
|
||
|
|
output[index_i] = average_feature_nn;
|
||
|
|
}
|
||
|
|
PCL_INFO ("Output size: %zu\n", static_cast<std::size_t>(output.size ()));
|
||
|
|
}
|
||
|
|
|
||
|
|
|
||
|
|
#define PCL_INSTANTIATE_PPFRGBEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::PPFRGBEstimation<T,NT,OutT>;
|
||
|
|
#define PCL_INSTANTIATE_PPFRGBRegionEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::PPFRGBRegionEstimation<T,NT,OutT>;
|
||
|
|
|
||
|
|
#endif // PCL_FEATURES_IMPL_PPFRGB_H_
|