162 lines
6.4 KiB
C++
162 lines
6.4 KiB
C++
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2011, Alexandru-Eugen Ichim
|
||
|
|
* Copyright (c) 2012-, Open Perception, Inc.
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* $Id$
|
||
|
|
*/
|
||
|
|
|
||
|
|
#ifndef PCL_FEATURES_IMPL_PFHRGB_H_
|
||
|
|
#define PCL_FEATURES_IMPL_PFHRGB_H_
|
||
|
|
|
||
|
|
#include <pcl/features/pfhrgb.h>
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template <typename PointInT, typename PointNT, typename PointOutT> bool
|
||
|
|
pcl::PFHRGBEstimation<PointInT, PointNT, PointOutT>::computeRGBPairFeatures (
|
||
|
|
const pcl::PointCloud<PointInT> &cloud, const pcl::PointCloud<PointNT> &normals,
|
||
|
|
int p_idx, int q_idx,
|
||
|
|
float &f1, float &f2, float &f3, float &f4, float &f5, float &f6, float &f7)
|
||
|
|
{
|
||
|
|
Eigen::Vector4i colors1 (cloud[p_idx].r, cloud[p_idx].g, cloud[p_idx].b, 0),
|
||
|
|
colors2 (cloud[q_idx].r, cloud[q_idx].g, cloud[q_idx].b, 0);
|
||
|
|
pcl::computeRGBPairFeatures (cloud[p_idx].getVector4fMap (), normals[p_idx].getNormalVector4fMap (),
|
||
|
|
colors1,
|
||
|
|
cloud[q_idx].getVector4fMap (), normals[q_idx].getNormalVector4fMap (),
|
||
|
|
colors2,
|
||
|
|
f1, f2, f3, f4, f5, f6, f7);
|
||
|
|
return (true);
|
||
|
|
}
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template <typename PointInT, typename PointNT, typename PointOutT> void
|
||
|
|
pcl::PFHRGBEstimation<PointInT, PointNT, PointOutT>::computePointPFHRGBSignature (
|
||
|
|
const pcl::PointCloud<PointInT> &cloud, const pcl::PointCloud<PointNT> &normals,
|
||
|
|
const pcl::Indices &indices, int nr_split, Eigen::VectorXf &pfhrgb_histogram)
|
||
|
|
{
|
||
|
|
int h_index, h_p;
|
||
|
|
|
||
|
|
// Clear the resultant point histogram
|
||
|
|
pfhrgb_histogram.setZero ();
|
||
|
|
|
||
|
|
// Factorization constant
|
||
|
|
float hist_incr = 100.0f / static_cast<float> (indices.size () * (indices.size () - 1) / 2);
|
||
|
|
|
||
|
|
// Iterate over all the points in the neighborhood
|
||
|
|
for (const auto& index_i: indices)
|
||
|
|
{
|
||
|
|
for (const auto& index_j: indices)
|
||
|
|
{
|
||
|
|
// Avoid unnecessary returns
|
||
|
|
if (index_i == index_j)
|
||
|
|
continue;
|
||
|
|
|
||
|
|
// Compute the pair NNi to NNj
|
||
|
|
if (!computeRGBPairFeatures (cloud, normals, index_i, index_j,
|
||
|
|
pfhrgb_tuple_[0], pfhrgb_tuple_[1], pfhrgb_tuple_[2], pfhrgb_tuple_[3],
|
||
|
|
pfhrgb_tuple_[4], pfhrgb_tuple_[5], pfhrgb_tuple_[6]))
|
||
|
|
continue;
|
||
|
|
|
||
|
|
// Normalize the f1, f2, f3, f5, f6, f7 features and push them in the histogram
|
||
|
|
f_index_[0] = static_cast<int> (std::floor (nr_split * ((pfhrgb_tuple_[0] + M_PI) * d_pi_)));
|
||
|
|
// @TODO: confirm "not to do for i == 3"
|
||
|
|
for (int i = 1; i < 3; ++i)
|
||
|
|
{
|
||
|
|
const float feature_value = nr_split * ((pfhrgb_tuple_[i] + 1.0) * 0.5);
|
||
|
|
f_index_[i] = static_cast<int> (std::floor (feature_value));
|
||
|
|
}
|
||
|
|
// color ratios are in [-1, 1]
|
||
|
|
for (int i = 4; i < 7; ++i)
|
||
|
|
{
|
||
|
|
const float feature_value = nr_split * ((pfhrgb_tuple_[i] + 1.0) * 0.5);
|
||
|
|
f_index_[i] = static_cast<int> (std::floor (feature_value));
|
||
|
|
}
|
||
|
|
for (auto& feature: f_index_)
|
||
|
|
{
|
||
|
|
feature = std::min(nr_split - 1, std::max(0, feature));
|
||
|
|
}
|
||
|
|
|
||
|
|
// Copy into the histogram
|
||
|
|
h_index = 0;
|
||
|
|
h_p = 1;
|
||
|
|
for (int d = 0; d < 3; ++d)
|
||
|
|
{
|
||
|
|
h_index += h_p * f_index_[d];
|
||
|
|
h_p *= nr_split;
|
||
|
|
}
|
||
|
|
pfhrgb_histogram[h_index] += hist_incr;
|
||
|
|
|
||
|
|
// and the colors
|
||
|
|
h_index = 125;
|
||
|
|
h_p = 1;
|
||
|
|
for (int d = 4; d < 7; ++d)
|
||
|
|
{
|
||
|
|
h_index += h_p * f_index_[d];
|
||
|
|
h_p *= nr_split;
|
||
|
|
}
|
||
|
|
pfhrgb_histogram[h_index] += hist_incr;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template <typename PointInT, typename PointNT, typename PointOutT> void
|
||
|
|
pcl::PFHRGBEstimation<PointInT, PointNT, PointOutT>::computeFeature (PointCloudOut &output)
|
||
|
|
{
|
||
|
|
/// nr_subdiv^3 for RGB and nr_subdiv^3 for the angular features
|
||
|
|
pfhrgb_histogram_.setZero (2 * nr_subdiv_ * nr_subdiv_ * nr_subdiv_);
|
||
|
|
pfhrgb_tuple_.setZero (7);
|
||
|
|
|
||
|
|
// Allocate enough space to hold the results
|
||
|
|
// \note This resize is irrelevant for a radiusSearch ().
|
||
|
|
pcl::Indices nn_indices (k_);
|
||
|
|
std::vector<float> nn_dists (k_);
|
||
|
|
|
||
|
|
// Iterating over the entire index vector
|
||
|
|
for (std::size_t idx = 0; idx < indices_->size (); ++idx)
|
||
|
|
{
|
||
|
|
this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists);
|
||
|
|
|
||
|
|
// Estimate the PFH signature at each patch
|
||
|
|
computePointPFHRGBSignature (*surface_, *normals_, nn_indices, nr_subdiv_, pfhrgb_histogram_);
|
||
|
|
|
||
|
|
std::copy_n (pfhrgb_histogram_.data (), pfhrgb_histogram_.size (),
|
||
|
|
output[idx].histogram);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
#define PCL_INSTANTIATE_PFHRGBEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::PFHRGBEstimation<T,NT,OutT>;
|
||
|
|
|
||
|
|
#endif /* PCL_FEATURES_IMPL_PFHRGB_H_ */
|