174 lines
6.7 KiB
C++
Raw Permalink Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#pragma once
#include <pcl/features/boundary.h>
#include <pcl/common/point_tests.h> // for pcl::isFinite
#include <cfloat>
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> bool
pcl::BoundaryEstimation<PointInT, PointNT, PointOutT>::isBoundaryPoint (
const pcl::PointCloud<PointInT> &cloud, int q_idx,
const pcl::Indices &indices,
const Eigen::Vector4f &u, const Eigen::Vector4f &v,
const float angle_threshold)
{
return (isBoundaryPoint (cloud, cloud[q_idx], indices, u, v, angle_threshold));
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> bool
pcl::BoundaryEstimation<PointInT, PointNT, PointOutT>::isBoundaryPoint (
const pcl::PointCloud<PointInT> &cloud, const PointInT &q_point,
const pcl::Indices &indices,
const Eigen::Vector4f &u, const Eigen::Vector4f &v,
const float angle_threshold)
{
if (indices.size () < 3)
return (false);
if (!std::isfinite (q_point.x) || !std::isfinite (q_point.y) || !std::isfinite (q_point.z))
return (false);
// Compute the angles between each neighboring point and the query point itself
std::vector<float> angles (indices.size ());
float max_dif = FLT_MIN, dif;
int cp = 0;
for (const auto &index : indices)
{
if (!std::isfinite (cloud[index].x) ||
!std::isfinite (cloud[index].y) ||
!std::isfinite (cloud[index].z))
continue;
Eigen::Vector4f delta = cloud[index].getVector4fMap () - q_point.getVector4fMap ();
if (delta == Eigen::Vector4f::Zero())
continue;
angles[cp++] = std::atan2 (v.dot (delta), u.dot (delta)); // the angles are fine between -PI and PI too
}
if (cp == 0)
return (false);
angles.resize (cp);
std::sort (angles.begin (), angles.end ());
// Compute the maximal angle difference between two consecutive angles
for (std::size_t i = 0; i < angles.size () - 1; ++i)
{
dif = angles[i + 1] - angles[i];
if (max_dif < dif)
max_dif = dif;
}
// Get the angle difference between the last and the first
dif = 2 * static_cast<float> (M_PI) - angles[angles.size () - 1] + angles[0];
if (max_dif < dif)
max_dif = dif;
// Check results
return (max_dif > angle_threshold);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> void
pcl::BoundaryEstimation<PointInT, PointNT, PointOutT>::computeFeature (PointCloudOut &output)
{
// Allocate enough space to hold the results
// \note This resize is irrelevant for a radiusSearch ().
pcl::Indices nn_indices (k_);
std::vector<float> nn_dists (k_);
Eigen::Vector4f u = Eigen::Vector4f::Zero (), v = Eigen::Vector4f::Zero ();
output.is_dense = true;
// Save a few cycles by not checking every point for NaN/Inf values if the cloud is set to dense
if (input_->is_dense)
{
// Iterating over the entire index vector
for (std::size_t idx = 0; idx < indices_->size (); ++idx)
{
if (this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
{
output[idx].boundary_point = std::numeric_limits<std::uint8_t>::quiet_NaN ();
output.is_dense = false;
continue;
}
// Obtain a coordinate system on the least-squares plane
//v = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().unitOrthogonal ();
//u = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().cross3 (v);
getCoordinateSystemOnPlane ((*normals_)[(*indices_)[idx]], u, v);
// Estimate whether the point is lying on a boundary surface or not
output[idx].boundary_point = isBoundaryPoint (*surface_, (*input_)[(*indices_)[idx]], nn_indices, u, v, angle_threshold_);
}
}
else
{
// Iterating over the entire index vector
for (std::size_t idx = 0; idx < indices_->size (); ++idx)
{
if (!isFinite ((*input_)[(*indices_)[idx]]) ||
this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
{
output[idx].boundary_point = std::numeric_limits<std::uint8_t>::quiet_NaN ();
output.is_dense = false;
continue;
}
// Obtain a coordinate system on the least-squares plane
//v = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().unitOrthogonal ();
//u = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().cross3 (v);
getCoordinateSystemOnPlane ((*normals_)[(*indices_)[idx]], u, v);
// Estimate whether the point is lying on a boundary surface or not
output[idx].boundary_point = isBoundaryPoint (*surface_, (*input_)[(*indices_)[idx]], nn_indices, u, v, angle_threshold_);
}
}
}
#define PCL_INSTANTIATE_BoundaryEstimation(PointInT,PointNT,PointOutT) template class PCL_EXPORTS pcl::BoundaryEstimation<PointInT, PointNT, PointOutT>;