500 lines
20 KiB
C
Raw Permalink Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#pragma once
#if defined __GNUC__
# pragma GCC system_header
#endif
// PCL includes
#include <pcl/memory.h>
#include <pcl/pcl_base.h>
#include <pcl/pcl_macros.h>
#include <pcl/search/search.h>
#include <functional>
namespace pcl
{
/** \brief Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squares
* plane normal and surface curvature.
* \param covariance_matrix the 3x3 covariance matrix
* \param point a point lying on the least-squares plane (SSE aligned)
* \param plane_parameters the resultant plane parameters as: a, b, c, d (ax + by + cz + d = 0)
* \param curvature the estimated surface curvature as a measure of
* \f[
* \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
* \f]
* \ingroup features
*/
inline void
solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix,
const Eigen::Vector4f &point,
Eigen::Vector4f &plane_parameters, float &curvature);
/** \brief Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squares
* plane normal and surface curvature.
* \param covariance_matrix the 3x3 covariance matrix
* \param nx the resultant X component of the plane normal
* \param ny the resultant Y component of the plane normal
* \param nz the resultant Z component of the plane normal
* \param curvature the estimated surface curvature as a measure of
* \f[
* \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
* \f]
* \ingroup features
*/
inline void
solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix,
float &nx, float &ny, float &nz, float &curvature);
////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Feature represents the base feature class. Some generic 3D operations that
* are applicable to all features are defined here as static methods.
*
* \attention
* The convention for a feature descriptor is:
* - if the nearest neighbors for the query point at which the descriptor is to be computed cannot be
* determined, the descriptor values will be set to NaN (not a number)
* - it is impossible to estimate a feature descriptor for a point that doesn't have finite 3D coordinates.
* Therefore, any point that has NaN data on x, y, or z, will most likely have its descriptor set to NaN.
*
* \author Radu B. Rusu
* \ingroup features
*/
template <typename PointInT, typename PointOutT>
class Feature : public PCLBase<PointInT>
{
public:
using PCLBase<PointInT>::indices_;
using PCLBase<PointInT>::input_;
using BaseClass = PCLBase<PointInT>;
using Ptr = shared_ptr< Feature<PointInT, PointOutT> >;
using ConstPtr = shared_ptr< const Feature<PointInT, PointOutT> >;
using KdTree = pcl::search::Search<PointInT>;
using KdTreePtr = typename KdTree::Ptr;
using PointCloudIn = pcl::PointCloud<PointInT>;
using PointCloudInPtr = typename PointCloudIn::Ptr;
using PointCloudInConstPtr = typename PointCloudIn::ConstPtr;
using PointCloudOut = pcl::PointCloud<PointOutT>;
using SearchMethod = std::function<int (std::size_t, double, pcl::Indices &, std::vector<float> &)>;
using SearchMethodSurface = std::function<int (const PointCloudIn &cloud, std::size_t index, double, pcl::Indices &, std::vector<float> &)>;
public:
/** \brief Empty constructor. */
Feature () :
feature_name_ (), search_method_surface_ (),
surface_(), tree_(),
search_parameter_(0), search_radius_(0), k_(0),
fake_surface_(false)
{}
/** \brief Empty destructor */
virtual ~Feature () {}
/** \brief Provide a pointer to a dataset to add additional information
* to estimate the features for every point in the input dataset. This
* is optional, if this is not set, it will only use the data in the
* input cloud to estimate the features. This is useful when you only
* need to compute the features for a downsampled cloud.
* \param[in] cloud a pointer to a PointCloud message
*/
inline void
setSearchSurface (const PointCloudInConstPtr &cloud)
{
surface_ = cloud;
fake_surface_ = false;
//use_surface_ = true;
}
/** \brief Get a pointer to the surface point cloud dataset. */
inline PointCloudInConstPtr
getSearchSurface () const
{
return (surface_);
}
/** \brief Provide a pointer to the search object.
* \param[in] tree a pointer to the spatial search object.
*/
inline void
setSearchMethod (const KdTreePtr &tree) { tree_ = tree; }
/** \brief Get a pointer to the search method used. */
inline KdTreePtr
getSearchMethod () const
{
return (tree_);
}
/** \brief Get the internal search parameter. */
inline double
getSearchParameter () const
{
return (search_parameter_);
}
/** \brief Set the number of k nearest neighbors to use for the feature estimation.
* \param[in] k the number of k-nearest neighbors
*/
inline void
setKSearch (int k) { k_ = k; }
/** \brief get the number of k nearest neighbors used for the feature estimation. */
inline int
getKSearch () const
{
return (k_);
}
/** \brief Set the sphere radius that is to be used for determining the nearest neighbors used for the feature
* estimation.
* \param[in] radius the sphere radius used as the maximum distance to consider a point a neighbor
*/
inline void
setRadiusSearch (double radius)
{
search_radius_ = radius;
}
/** \brief Get the sphere radius used for determining the neighbors. */
inline double
getRadiusSearch () const
{
return (search_radius_);
}
/** \brief Base method for feature estimation for all points given in
* <setInputCloud (), setIndices ()> using the surface in setSearchSurface ()
* and the spatial locator in setSearchMethod ()
* \param[out] output the resultant point cloud model dataset containing the estimated features
*/
void
compute (PointCloudOut &output);
protected:
/** \brief The feature name. */
std::string feature_name_;
/** \brief The search method template for points. */
SearchMethodSurface search_method_surface_;
/** \brief An input point cloud describing the surface that is to be used
* for nearest neighbors estimation.
*/
PointCloudInConstPtr surface_;
/** \brief A pointer to the spatial search object. */
KdTreePtr tree_;
/** \brief The actual search parameter (from either \a search_radius_ or \a k_). */
double search_parameter_;
/** \brief The nearest neighbors search radius for each point. */
double search_radius_;
/** \brief The number of K nearest neighbors to use for each point. */
int k_;
/** \brief Get a string representation of the name of this class. */
inline const std::string&
getClassName () const { return (feature_name_); }
/** \brief This method should get called before starting the actual computation. */
virtual bool
initCompute ();
/** \brief This method should get called after ending the actual computation. */
virtual bool
deinitCompute ();
/** \brief If no surface is given, we use the input PointCloud as the surface. */
bool fake_surface_;
/** \brief Search for k-nearest neighbors using the spatial locator from
* \a setSearchmethod, and the given surface from \a setSearchSurface.
* \param[in] index the index of the query point
* \param[in] parameter the search parameter (either k or radius)
* \param[out] indices the resultant vector of indices representing the k-nearest neighbors
* \param[out] distances the resultant vector of distances representing the distances from the query point to the
* k-nearest neighbors
*
* \return the number of neighbors found. If no neighbors are found or an error occurred, return 0.
*/
inline int
searchForNeighbors (std::size_t index, double parameter,
pcl::Indices &indices, std::vector<float> &distances) const
{
return (search_method_surface_ (*input_, index, parameter, indices, distances));
}
/** \brief Search for k-nearest neighbors using the spatial locator from
* \a setSearchmethod, and the given surface from \a setSearchSurface.
* \param[in] cloud the query point cloud
* \param[in] index the index of the query point in \a cloud
* \param[in] parameter the search parameter (either k or radius)
* \param[out] indices the resultant vector of indices representing the k-nearest neighbors
* \param[out] distances the resultant vector of distances representing the distances from the query point to the
* k-nearest neighbors
*
* \return the number of neighbors found. If no neighbors are found or an error occurred, return 0.
*/
inline int
searchForNeighbors (const PointCloudIn &cloud, std::size_t index, double parameter,
pcl::Indices &indices, std::vector<float> &distances) const
{
return (search_method_surface_ (cloud, index, parameter, indices, distances));
}
private:
/** \brief Abstract feature estimation method.
* \param[out] output the resultant features
*/
virtual void
computeFeature (PointCloudOut &output) = 0;
public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT>
class FeatureFromNormals : public Feature<PointInT, PointOutT>
{
using PointCloudIn = typename Feature<PointInT, PointOutT>::PointCloudIn;
using PointCloudInPtr = typename PointCloudIn::Ptr;
using PointCloudInConstPtr = typename PointCloudIn::ConstPtr;
using PointCloudOut = typename Feature<PointInT, PointOutT>::PointCloudOut;
public:
using PointCloudN = pcl::PointCloud<PointNT>;
using PointCloudNPtr = typename PointCloudN::Ptr;
using PointCloudNConstPtr = typename PointCloudN::ConstPtr;
using Ptr = shared_ptr< FeatureFromNormals<PointInT, PointNT, PointOutT> >;
using ConstPtr = shared_ptr< const FeatureFromNormals<PointInT, PointNT, PointOutT> >;
// Members derived from the base class
using Feature<PointInT, PointOutT>::input_;
using Feature<PointInT, PointOutT>::surface_;
using Feature<PointInT, PointOutT>::getClassName;
/** \brief Empty constructor. */
FeatureFromNormals () : normals_ () {}
/** \brief Empty destructor */
virtual ~FeatureFromNormals () {}
/** \brief Provide a pointer to the input dataset that contains the point normals of
* the XYZ dataset.
* In case of search surface is set to be different from the input cloud,
* normals should correspond to the search surface, not the input cloud!
* \param[in] normals the const boost shared pointer to a PointCloud of normals.
* By convention, L2 norm of each normal should be 1.
*/
inline void
setInputNormals (const PointCloudNConstPtr &normals) { normals_ = normals; }
/** \brief Get a pointer to the normals of the input XYZ point cloud dataset. */
inline PointCloudNConstPtr
getInputNormals () const { return (normals_); }
protected:
/** \brief A pointer to the input dataset that contains the point normals of the XYZ
* dataset.
*/
PointCloudNConstPtr normals_;
/** \brief This method should get called before starting the actual computation. */
virtual bool
initCompute ();
public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointLT, typename PointOutT>
class FeatureFromLabels : public Feature<PointInT, PointOutT>
{
using PointCloudIn = typename Feature<PointInT, PointOutT>::PointCloudIn;
using PointCloudInPtr = typename PointCloudIn::Ptr;
using PointCloudInConstPtr = typename PointCloudIn::ConstPtr;
using PointCloudL = pcl::PointCloud<PointLT>;
using PointCloudNPtr = typename PointCloudL::Ptr;
using PointCloudLConstPtr = typename PointCloudL::ConstPtr;
using PointCloudOut = typename Feature<PointInT, PointOutT>::PointCloudOut;
public:
using Ptr = shared_ptr< FeatureFromLabels<PointInT, PointLT, PointOutT> >;
using ConstPtr = shared_ptr< const FeatureFromLabels<PointInT, PointLT, PointOutT> >;
// Members derived from the base class
using Feature<PointInT, PointOutT>::input_;
using Feature<PointInT, PointOutT>::surface_;
using Feature<PointInT, PointOutT>::getClassName;
using Feature<PointInT, PointOutT>::k_;
/** \brief Empty constructor. */
FeatureFromLabels () : labels_ ()
{
k_ = 1; // Search tree is not always used here.
}
/** \brief Empty destructor */
virtual ~FeatureFromLabels () {}
/** \brief Provide a pointer to the input dataset that contains the point labels of
* the XYZ dataset.
* In case of search surface is set to be different from the input cloud,
* labels should correspond to the search surface, not the input cloud!
* \param[in] labels the const boost shared pointer to a PointCloud of labels.
*/
inline void
setInputLabels (const PointCloudLConstPtr &labels)
{
labels_ = labels;
}
/** \brief Get a pointer to the labels of the input XYZ point cloud dataset. */
inline PointCloudLConstPtr
getInputLabels () const
{
return (labels_);
}
protected:
/** \brief A pointer to the input dataset that contains the point labels of the XYZ
* dataset.
*/
PointCloudLConstPtr labels_;
/** \brief This method should get called before starting the actual computation. */
virtual bool
initCompute ();
public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////
/** \brief FeatureWithLocalReferenceFrames provides a public interface for descriptor
* extractor classes which need a local reference frame at each input keypoint.
*
* \attention
* This interface is for backward compatibility with existing code and in the future it could be
* merged with pcl::Feature. Subclasses should call the protected method initLocalReferenceFrames ()
* to correctly initialize the frames_ member.
*
* \author Nicola Fioraio
* \ingroup features
*/
template <typename PointInT, typename PointRFT>
class FeatureWithLocalReferenceFrames
{
public:
using PointCloudLRF = pcl::PointCloud<PointRFT>;
using PointCloudLRFPtr = typename PointCloudLRF::Ptr;
using PointCloudLRFConstPtr = typename PointCloudLRF::ConstPtr;
/** \brief Empty constructor. */
FeatureWithLocalReferenceFrames () : frames_ (), frames_never_defined_ (true) {}
/** \brief Empty destructor. */
virtual ~FeatureWithLocalReferenceFrames () {}
/** \brief Provide a pointer to the input dataset that contains the local
* reference frames of the XYZ dataset.
* In case of search surface is set to be different from the input cloud,
* local reference frames should correspond to the input cloud, not the search surface!
* \param[in] frames the const boost shared pointer to a PointCloud of reference frames.
*/
inline void
setInputReferenceFrames (const PointCloudLRFConstPtr &frames)
{
frames_ = frames;
frames_never_defined_ = false;
}
/** \brief Get a pointer to the local reference frames. */
inline PointCloudLRFConstPtr
getInputReferenceFrames () const
{
return (frames_);
}
protected:
/** \brief A boost shared pointer to the local reference frames. */
PointCloudLRFConstPtr frames_;
/** \brief The user has never set the frames. */
bool frames_never_defined_;
/** \brief Check if frames_ has been correctly initialized and compute it if needed.
* \param input the subclass' input cloud dataset.
* \param lrf_estimation a pointer to a local reference frame estimation class to be used as default.
* \return true if frames_ has been correctly initialized.
*/
using LRFEstimationPtr = typename Feature<PointInT, PointRFT>::Ptr;
virtual bool
initLocalReferenceFrames (const std::size_t& indices_size,
const LRFEstimationPtr& lrf_estimation = LRFEstimationPtr());
};
}
#include <pcl/features/impl/feature.hpp>