500 lines
20 KiB
C
500 lines
20 KiB
C
|
|
/*
|
||
|
|
* Software License Agreement (BSD License)
|
||
|
|
*
|
||
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
||
|
|
* Copyright (c) 2010-2011, Willow Garage, Inc.
|
||
|
|
* Copyright (c) 2012-, Open Perception, Inc.
|
||
|
|
*
|
||
|
|
* All rights reserved.
|
||
|
|
*
|
||
|
|
* Redistribution and use in source and binary forms, with or without
|
||
|
|
* modification, are permitted provided that the following conditions
|
||
|
|
* are met:
|
||
|
|
*
|
||
|
|
* * Redistributions of source code must retain the above copyright
|
||
|
|
* notice, this list of conditions and the following disclaimer.
|
||
|
|
* * Redistributions in binary form must reproduce the above
|
||
|
|
* copyright notice, this list of conditions and the following
|
||
|
|
* disclaimer in the documentation and/or other materials provided
|
||
|
|
* with the distribution.
|
||
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
||
|
|
* contributors may be used to endorse or promote products derived
|
||
|
|
* from this software without specific prior written permission.
|
||
|
|
*
|
||
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
*
|
||
|
|
* $Id$
|
||
|
|
*
|
||
|
|
*/
|
||
|
|
|
||
|
|
#pragma once
|
||
|
|
|
||
|
|
#if defined __GNUC__
|
||
|
|
# pragma GCC system_header
|
||
|
|
#endif
|
||
|
|
|
||
|
|
// PCL includes
|
||
|
|
#include <pcl/memory.h>
|
||
|
|
#include <pcl/pcl_base.h>
|
||
|
|
#include <pcl/pcl_macros.h>
|
||
|
|
#include <pcl/search/search.h>
|
||
|
|
|
||
|
|
#include <functional>
|
||
|
|
|
||
|
|
namespace pcl
|
||
|
|
{
|
||
|
|
/** \brief Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squares
|
||
|
|
* plane normal and surface curvature.
|
||
|
|
* \param covariance_matrix the 3x3 covariance matrix
|
||
|
|
* \param point a point lying on the least-squares plane (SSE aligned)
|
||
|
|
* \param plane_parameters the resultant plane parameters as: a, b, c, d (ax + by + cz + d = 0)
|
||
|
|
* \param curvature the estimated surface curvature as a measure of
|
||
|
|
* \f[
|
||
|
|
* \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
|
||
|
|
* \f]
|
||
|
|
* \ingroup features
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix,
|
||
|
|
const Eigen::Vector4f &point,
|
||
|
|
Eigen::Vector4f &plane_parameters, float &curvature);
|
||
|
|
|
||
|
|
/** \brief Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squares
|
||
|
|
* plane normal and surface curvature.
|
||
|
|
* \param covariance_matrix the 3x3 covariance matrix
|
||
|
|
* \param nx the resultant X component of the plane normal
|
||
|
|
* \param ny the resultant Y component of the plane normal
|
||
|
|
* \param nz the resultant Z component of the plane normal
|
||
|
|
* \param curvature the estimated surface curvature as a measure of
|
||
|
|
* \f[
|
||
|
|
* \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
|
||
|
|
* \f]
|
||
|
|
* \ingroup features
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix,
|
||
|
|
float &nx, float &ny, float &nz, float &curvature);
|
||
|
|
|
||
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
/** \brief Feature represents the base feature class. Some generic 3D operations that
|
||
|
|
* are applicable to all features are defined here as static methods.
|
||
|
|
*
|
||
|
|
* \attention
|
||
|
|
* The convention for a feature descriptor is:
|
||
|
|
* - if the nearest neighbors for the query point at which the descriptor is to be computed cannot be
|
||
|
|
* determined, the descriptor values will be set to NaN (not a number)
|
||
|
|
* - it is impossible to estimate a feature descriptor for a point that doesn't have finite 3D coordinates.
|
||
|
|
* Therefore, any point that has NaN data on x, y, or z, will most likely have its descriptor set to NaN.
|
||
|
|
*
|
||
|
|
* \author Radu B. Rusu
|
||
|
|
* \ingroup features
|
||
|
|
*/
|
||
|
|
template <typename PointInT, typename PointOutT>
|
||
|
|
class Feature : public PCLBase<PointInT>
|
||
|
|
{
|
||
|
|
public:
|
||
|
|
using PCLBase<PointInT>::indices_;
|
||
|
|
using PCLBase<PointInT>::input_;
|
||
|
|
|
||
|
|
using BaseClass = PCLBase<PointInT>;
|
||
|
|
|
||
|
|
using Ptr = shared_ptr< Feature<PointInT, PointOutT> >;
|
||
|
|
using ConstPtr = shared_ptr< const Feature<PointInT, PointOutT> >;
|
||
|
|
|
||
|
|
using KdTree = pcl::search::Search<PointInT>;
|
||
|
|
using KdTreePtr = typename KdTree::Ptr;
|
||
|
|
|
||
|
|
using PointCloudIn = pcl::PointCloud<PointInT>;
|
||
|
|
using PointCloudInPtr = typename PointCloudIn::Ptr;
|
||
|
|
using PointCloudInConstPtr = typename PointCloudIn::ConstPtr;
|
||
|
|
|
||
|
|
using PointCloudOut = pcl::PointCloud<PointOutT>;
|
||
|
|
|
||
|
|
using SearchMethod = std::function<int (std::size_t, double, pcl::Indices &, std::vector<float> &)>;
|
||
|
|
using SearchMethodSurface = std::function<int (const PointCloudIn &cloud, std::size_t index, double, pcl::Indices &, std::vector<float> &)>;
|
||
|
|
|
||
|
|
public:
|
||
|
|
/** \brief Empty constructor. */
|
||
|
|
Feature () :
|
||
|
|
feature_name_ (), search_method_surface_ (),
|
||
|
|
surface_(), tree_(),
|
||
|
|
search_parameter_(0), search_radius_(0), k_(0),
|
||
|
|
fake_surface_(false)
|
||
|
|
{}
|
||
|
|
|
||
|
|
/** \brief Empty destructor */
|
||
|
|
virtual ~Feature () {}
|
||
|
|
|
||
|
|
/** \brief Provide a pointer to a dataset to add additional information
|
||
|
|
* to estimate the features for every point in the input dataset. This
|
||
|
|
* is optional, if this is not set, it will only use the data in the
|
||
|
|
* input cloud to estimate the features. This is useful when you only
|
||
|
|
* need to compute the features for a downsampled cloud.
|
||
|
|
* \param[in] cloud a pointer to a PointCloud message
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setSearchSurface (const PointCloudInConstPtr &cloud)
|
||
|
|
{
|
||
|
|
surface_ = cloud;
|
||
|
|
fake_surface_ = false;
|
||
|
|
//use_surface_ = true;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get a pointer to the surface point cloud dataset. */
|
||
|
|
inline PointCloudInConstPtr
|
||
|
|
getSearchSurface () const
|
||
|
|
{
|
||
|
|
return (surface_);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Provide a pointer to the search object.
|
||
|
|
* \param[in] tree a pointer to the spatial search object.
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setSearchMethod (const KdTreePtr &tree) { tree_ = tree; }
|
||
|
|
|
||
|
|
/** \brief Get a pointer to the search method used. */
|
||
|
|
inline KdTreePtr
|
||
|
|
getSearchMethod () const
|
||
|
|
{
|
||
|
|
return (tree_);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get the internal search parameter. */
|
||
|
|
inline double
|
||
|
|
getSearchParameter () const
|
||
|
|
{
|
||
|
|
return (search_parameter_);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Set the number of k nearest neighbors to use for the feature estimation.
|
||
|
|
* \param[in] k the number of k-nearest neighbors
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setKSearch (int k) { k_ = k; }
|
||
|
|
|
||
|
|
/** \brief get the number of k nearest neighbors used for the feature estimation. */
|
||
|
|
inline int
|
||
|
|
getKSearch () const
|
||
|
|
{
|
||
|
|
return (k_);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Set the sphere radius that is to be used for determining the nearest neighbors used for the feature
|
||
|
|
* estimation.
|
||
|
|
* \param[in] radius the sphere radius used as the maximum distance to consider a point a neighbor
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setRadiusSearch (double radius)
|
||
|
|
{
|
||
|
|
search_radius_ = radius;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get the sphere radius used for determining the neighbors. */
|
||
|
|
inline double
|
||
|
|
getRadiusSearch () const
|
||
|
|
{
|
||
|
|
return (search_radius_);
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Base method for feature estimation for all points given in
|
||
|
|
* <setInputCloud (), setIndices ()> using the surface in setSearchSurface ()
|
||
|
|
* and the spatial locator in setSearchMethod ()
|
||
|
|
* \param[out] output the resultant point cloud model dataset containing the estimated features
|
||
|
|
*/
|
||
|
|
void
|
||
|
|
compute (PointCloudOut &output);
|
||
|
|
|
||
|
|
protected:
|
||
|
|
/** \brief The feature name. */
|
||
|
|
std::string feature_name_;
|
||
|
|
|
||
|
|
/** \brief The search method template for points. */
|
||
|
|
SearchMethodSurface search_method_surface_;
|
||
|
|
|
||
|
|
/** \brief An input point cloud describing the surface that is to be used
|
||
|
|
* for nearest neighbors estimation.
|
||
|
|
*/
|
||
|
|
PointCloudInConstPtr surface_;
|
||
|
|
|
||
|
|
/** \brief A pointer to the spatial search object. */
|
||
|
|
KdTreePtr tree_;
|
||
|
|
|
||
|
|
/** \brief The actual search parameter (from either \a search_radius_ or \a k_). */
|
||
|
|
double search_parameter_;
|
||
|
|
|
||
|
|
/** \brief The nearest neighbors search radius for each point. */
|
||
|
|
double search_radius_;
|
||
|
|
|
||
|
|
/** \brief The number of K nearest neighbors to use for each point. */
|
||
|
|
int k_;
|
||
|
|
|
||
|
|
/** \brief Get a string representation of the name of this class. */
|
||
|
|
inline const std::string&
|
||
|
|
getClassName () const { return (feature_name_); }
|
||
|
|
|
||
|
|
/** \brief This method should get called before starting the actual computation. */
|
||
|
|
virtual bool
|
||
|
|
initCompute ();
|
||
|
|
|
||
|
|
/** \brief This method should get called after ending the actual computation. */
|
||
|
|
virtual bool
|
||
|
|
deinitCompute ();
|
||
|
|
|
||
|
|
/** \brief If no surface is given, we use the input PointCloud as the surface. */
|
||
|
|
bool fake_surface_;
|
||
|
|
|
||
|
|
/** \brief Search for k-nearest neighbors using the spatial locator from
|
||
|
|
* \a setSearchmethod, and the given surface from \a setSearchSurface.
|
||
|
|
* \param[in] index the index of the query point
|
||
|
|
* \param[in] parameter the search parameter (either k or radius)
|
||
|
|
* \param[out] indices the resultant vector of indices representing the k-nearest neighbors
|
||
|
|
* \param[out] distances the resultant vector of distances representing the distances from the query point to the
|
||
|
|
* k-nearest neighbors
|
||
|
|
*
|
||
|
|
* \return the number of neighbors found. If no neighbors are found or an error occurred, return 0.
|
||
|
|
*/
|
||
|
|
inline int
|
||
|
|
searchForNeighbors (std::size_t index, double parameter,
|
||
|
|
pcl::Indices &indices, std::vector<float> &distances) const
|
||
|
|
{
|
||
|
|
return (search_method_surface_ (*input_, index, parameter, indices, distances));
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Search for k-nearest neighbors using the spatial locator from
|
||
|
|
* \a setSearchmethod, and the given surface from \a setSearchSurface.
|
||
|
|
* \param[in] cloud the query point cloud
|
||
|
|
* \param[in] index the index of the query point in \a cloud
|
||
|
|
* \param[in] parameter the search parameter (either k or radius)
|
||
|
|
* \param[out] indices the resultant vector of indices representing the k-nearest neighbors
|
||
|
|
* \param[out] distances the resultant vector of distances representing the distances from the query point to the
|
||
|
|
* k-nearest neighbors
|
||
|
|
*
|
||
|
|
* \return the number of neighbors found. If no neighbors are found or an error occurred, return 0.
|
||
|
|
*/
|
||
|
|
inline int
|
||
|
|
searchForNeighbors (const PointCloudIn &cloud, std::size_t index, double parameter,
|
||
|
|
pcl::Indices &indices, std::vector<float> &distances) const
|
||
|
|
{
|
||
|
|
return (search_method_surface_ (cloud, index, parameter, indices, distances));
|
||
|
|
}
|
||
|
|
|
||
|
|
private:
|
||
|
|
/** \brief Abstract feature estimation method.
|
||
|
|
* \param[out] output the resultant features
|
||
|
|
*/
|
||
|
|
virtual void
|
||
|
|
computeFeature (PointCloudOut &output) = 0;
|
||
|
|
|
||
|
|
public:
|
||
|
|
PCL_MAKE_ALIGNED_OPERATOR_NEW
|
||
|
|
};
|
||
|
|
|
||
|
|
|
||
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template <typename PointInT, typename PointNT, typename PointOutT>
|
||
|
|
class FeatureFromNormals : public Feature<PointInT, PointOutT>
|
||
|
|
{
|
||
|
|
using PointCloudIn = typename Feature<PointInT, PointOutT>::PointCloudIn;
|
||
|
|
using PointCloudInPtr = typename PointCloudIn::Ptr;
|
||
|
|
using PointCloudInConstPtr = typename PointCloudIn::ConstPtr;
|
||
|
|
using PointCloudOut = typename Feature<PointInT, PointOutT>::PointCloudOut;
|
||
|
|
|
||
|
|
public:
|
||
|
|
using PointCloudN = pcl::PointCloud<PointNT>;
|
||
|
|
using PointCloudNPtr = typename PointCloudN::Ptr;
|
||
|
|
using PointCloudNConstPtr = typename PointCloudN::ConstPtr;
|
||
|
|
|
||
|
|
using Ptr = shared_ptr< FeatureFromNormals<PointInT, PointNT, PointOutT> >;
|
||
|
|
using ConstPtr = shared_ptr< const FeatureFromNormals<PointInT, PointNT, PointOutT> >;
|
||
|
|
|
||
|
|
// Members derived from the base class
|
||
|
|
using Feature<PointInT, PointOutT>::input_;
|
||
|
|
using Feature<PointInT, PointOutT>::surface_;
|
||
|
|
using Feature<PointInT, PointOutT>::getClassName;
|
||
|
|
|
||
|
|
/** \brief Empty constructor. */
|
||
|
|
FeatureFromNormals () : normals_ () {}
|
||
|
|
|
||
|
|
/** \brief Empty destructor */
|
||
|
|
virtual ~FeatureFromNormals () {}
|
||
|
|
|
||
|
|
/** \brief Provide a pointer to the input dataset that contains the point normals of
|
||
|
|
* the XYZ dataset.
|
||
|
|
* In case of search surface is set to be different from the input cloud,
|
||
|
|
* normals should correspond to the search surface, not the input cloud!
|
||
|
|
* \param[in] normals the const boost shared pointer to a PointCloud of normals.
|
||
|
|
* By convention, L2 norm of each normal should be 1.
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setInputNormals (const PointCloudNConstPtr &normals) { normals_ = normals; }
|
||
|
|
|
||
|
|
/** \brief Get a pointer to the normals of the input XYZ point cloud dataset. */
|
||
|
|
inline PointCloudNConstPtr
|
||
|
|
getInputNormals () const { return (normals_); }
|
||
|
|
|
||
|
|
protected:
|
||
|
|
/** \brief A pointer to the input dataset that contains the point normals of the XYZ
|
||
|
|
* dataset.
|
||
|
|
*/
|
||
|
|
PointCloudNConstPtr normals_;
|
||
|
|
|
||
|
|
/** \brief This method should get called before starting the actual computation. */
|
||
|
|
virtual bool
|
||
|
|
initCompute ();
|
||
|
|
|
||
|
|
public:
|
||
|
|
PCL_MAKE_ALIGNED_OPERATOR_NEW
|
||
|
|
};
|
||
|
|
|
||
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
template <typename PointInT, typename PointLT, typename PointOutT>
|
||
|
|
class FeatureFromLabels : public Feature<PointInT, PointOutT>
|
||
|
|
{
|
||
|
|
using PointCloudIn = typename Feature<PointInT, PointOutT>::PointCloudIn;
|
||
|
|
using PointCloudInPtr = typename PointCloudIn::Ptr;
|
||
|
|
using PointCloudInConstPtr = typename PointCloudIn::ConstPtr;
|
||
|
|
|
||
|
|
using PointCloudL = pcl::PointCloud<PointLT>;
|
||
|
|
using PointCloudNPtr = typename PointCloudL::Ptr;
|
||
|
|
using PointCloudLConstPtr = typename PointCloudL::ConstPtr;
|
||
|
|
|
||
|
|
using PointCloudOut = typename Feature<PointInT, PointOutT>::PointCloudOut;
|
||
|
|
|
||
|
|
public:
|
||
|
|
using Ptr = shared_ptr< FeatureFromLabels<PointInT, PointLT, PointOutT> >;
|
||
|
|
using ConstPtr = shared_ptr< const FeatureFromLabels<PointInT, PointLT, PointOutT> >;
|
||
|
|
|
||
|
|
// Members derived from the base class
|
||
|
|
using Feature<PointInT, PointOutT>::input_;
|
||
|
|
using Feature<PointInT, PointOutT>::surface_;
|
||
|
|
using Feature<PointInT, PointOutT>::getClassName;
|
||
|
|
using Feature<PointInT, PointOutT>::k_;
|
||
|
|
|
||
|
|
/** \brief Empty constructor. */
|
||
|
|
FeatureFromLabels () : labels_ ()
|
||
|
|
{
|
||
|
|
k_ = 1; // Search tree is not always used here.
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Empty destructor */
|
||
|
|
virtual ~FeatureFromLabels () {}
|
||
|
|
|
||
|
|
/** \brief Provide a pointer to the input dataset that contains the point labels of
|
||
|
|
* the XYZ dataset.
|
||
|
|
* In case of search surface is set to be different from the input cloud,
|
||
|
|
* labels should correspond to the search surface, not the input cloud!
|
||
|
|
* \param[in] labels the const boost shared pointer to a PointCloud of labels.
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setInputLabels (const PointCloudLConstPtr &labels)
|
||
|
|
{
|
||
|
|
labels_ = labels;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get a pointer to the labels of the input XYZ point cloud dataset. */
|
||
|
|
inline PointCloudLConstPtr
|
||
|
|
getInputLabels () const
|
||
|
|
{
|
||
|
|
return (labels_);
|
||
|
|
}
|
||
|
|
|
||
|
|
protected:
|
||
|
|
/** \brief A pointer to the input dataset that contains the point labels of the XYZ
|
||
|
|
* dataset.
|
||
|
|
*/
|
||
|
|
PointCloudLConstPtr labels_;
|
||
|
|
|
||
|
|
/** \brief This method should get called before starting the actual computation. */
|
||
|
|
virtual bool
|
||
|
|
initCompute ();
|
||
|
|
|
||
|
|
public:
|
||
|
|
PCL_MAKE_ALIGNED_OPERATOR_NEW
|
||
|
|
};
|
||
|
|
|
||
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
/** \brief FeatureWithLocalReferenceFrames provides a public interface for descriptor
|
||
|
|
* extractor classes which need a local reference frame at each input keypoint.
|
||
|
|
*
|
||
|
|
* \attention
|
||
|
|
* This interface is for backward compatibility with existing code and in the future it could be
|
||
|
|
* merged with pcl::Feature. Subclasses should call the protected method initLocalReferenceFrames ()
|
||
|
|
* to correctly initialize the frames_ member.
|
||
|
|
*
|
||
|
|
* \author Nicola Fioraio
|
||
|
|
* \ingroup features
|
||
|
|
*/
|
||
|
|
template <typename PointInT, typename PointRFT>
|
||
|
|
class FeatureWithLocalReferenceFrames
|
||
|
|
{
|
||
|
|
public:
|
||
|
|
using PointCloudLRF = pcl::PointCloud<PointRFT>;
|
||
|
|
using PointCloudLRFPtr = typename PointCloudLRF::Ptr;
|
||
|
|
using PointCloudLRFConstPtr = typename PointCloudLRF::ConstPtr;
|
||
|
|
|
||
|
|
/** \brief Empty constructor. */
|
||
|
|
FeatureWithLocalReferenceFrames () : frames_ (), frames_never_defined_ (true) {}
|
||
|
|
|
||
|
|
/** \brief Empty destructor. */
|
||
|
|
virtual ~FeatureWithLocalReferenceFrames () {}
|
||
|
|
|
||
|
|
/** \brief Provide a pointer to the input dataset that contains the local
|
||
|
|
* reference frames of the XYZ dataset.
|
||
|
|
* In case of search surface is set to be different from the input cloud,
|
||
|
|
* local reference frames should correspond to the input cloud, not the search surface!
|
||
|
|
* \param[in] frames the const boost shared pointer to a PointCloud of reference frames.
|
||
|
|
*/
|
||
|
|
inline void
|
||
|
|
setInputReferenceFrames (const PointCloudLRFConstPtr &frames)
|
||
|
|
{
|
||
|
|
frames_ = frames;
|
||
|
|
frames_never_defined_ = false;
|
||
|
|
}
|
||
|
|
|
||
|
|
/** \brief Get a pointer to the local reference frames. */
|
||
|
|
inline PointCloudLRFConstPtr
|
||
|
|
getInputReferenceFrames () const
|
||
|
|
{
|
||
|
|
return (frames_);
|
||
|
|
}
|
||
|
|
|
||
|
|
protected:
|
||
|
|
/** \brief A boost shared pointer to the local reference frames. */
|
||
|
|
PointCloudLRFConstPtr frames_;
|
||
|
|
/** \brief The user has never set the frames. */
|
||
|
|
bool frames_never_defined_;
|
||
|
|
|
||
|
|
/** \brief Check if frames_ has been correctly initialized and compute it if needed.
|
||
|
|
* \param input the subclass' input cloud dataset.
|
||
|
|
* \param lrf_estimation a pointer to a local reference frame estimation class to be used as default.
|
||
|
|
* \return true if frames_ has been correctly initialized.
|
||
|
|
*/
|
||
|
|
using LRFEstimationPtr = typename Feature<PointInT, PointRFT>::Ptr;
|
||
|
|
virtual bool
|
||
|
|
initLocalReferenceFrames (const std::size_t& indices_size,
|
||
|
|
const LRFEstimationPtr& lrf_estimation = LRFEstimationPtr());
|
||
|
|
};
|
||
|
|
}
|
||
|
|
|
||
|
|
#include <pcl/features/impl/feature.hpp>
|