263 lines
12 KiB
C
Raw Permalink Normal View History

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#pragma once
#include <pcl/point_cloud.h>
#include <Eigen/Core> // for VectorXf
#include <functional>
namespace pcl
{
/** Class GaussianKernel assembles all the method for computing,
* convolving, smoothing, gradients computing an image using
* a gaussian kernel. The image is stored in point cloud elements
* intensity member or rgb or...
* \author Nizar Sallem
* \ingroup common
*/
class PCL_EXPORTS GaussianKernel
{
public:
static const unsigned MAX_KERNEL_WIDTH = 71;
/** Computes the gaussian kernel and dervative assiociated to sigma.
* The kernel and derivative width are adjusted according.
* \param[in] sigma
* \param[out] kernel the computed gaussian kernel
* \param[in] kernel_width the desired kernel width upper bond
* \throws pcl::KernelWidthTooSmallException
*/
void
compute (float sigma,
Eigen::VectorXf &kernel,
unsigned kernel_width = MAX_KERNEL_WIDTH) const;
/** Computes the gaussian kernel and dervative assiociated to sigma.
* The kernel and derivative width are adjusted according.
* \param[in] sigma
* \param[out] kernel the computed gaussian kernel
* \param[out] derivative the computed kernel derivative
* \param[in] kernel_width the desired kernel width upper bond
* \throws pcl::KernelWidthTooSmallException
*/
void
compute (float sigma,
Eigen::VectorXf &kernel,
Eigen::VectorXf &derivative,
unsigned kernel_width = MAX_KERNEL_WIDTH) const;
/** Convolve a float image rows by a given kernel.
* \param[in] kernel convolution kernel
* \param[in] input the image to convolve
* \param[out] output the convolved image
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
* output.cols () < input.cols () then output is resized to input sizes.
*/
void
convolveRows (const pcl::PointCloud<float> &input,
const Eigen::VectorXf &kernel,
pcl::PointCloud<float> &output) const;
/** Convolve a float image rows by a given kernel.
* \param[in] input the image to convolve
* \param[in] field_accessor a field accessor
* \param[in] kernel convolution kernel
* \param[out] output the convolved image
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
* output.cols () < input.cols () then output is resized to input sizes.
*/
template <typename PointT> void
convolveRows (const pcl::PointCloud<PointT> &input,
std::function <float (const PointT& p)> field_accessor,
const Eigen::VectorXf &kernel,
pcl::PointCloud<float> &output) const;
/** Convolve a float image columns by a given kernel.
* \param[in] input the image to convolve
* \param[in] kernel convolution kernel
* \param[out] output the convolved image
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
* output.cols () < input.cols () then output is resized to input sizes.
*/
void
convolveCols (const pcl::PointCloud<float> &input,
const Eigen::VectorXf &kernel,
pcl::PointCloud<float> &output) const;
/** Convolve a float image columns by a given kernel.
* \param[in] input the image to convolve
* \param[in] field_accessor a field accessor
* \param[in] kernel convolution kernel
* \param[out] output the convolved image
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
* output.cols () < input.cols () then output is resized to input sizes.
*/
template <typename PointT> void
convolveCols (const pcl::PointCloud<PointT> &input,
std::function <float (const PointT& p)> field_accessor,
const Eigen::VectorXf &kernel,
pcl::PointCloud<float> &output) const;
/** Convolve a float image in the 2 directions
* \param[in] horiz_kernel kernel for convolving rows
* \param[in] vert_kernel kernel for convolving columns
* \param[in] input image to convolve
* \param[out] output the convolved image
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
* output.cols () < input.cols () then output is resized to input sizes.
*/
inline void
convolve (const pcl::PointCloud<float> &input,
const Eigen::VectorXf &horiz_kernel,
const Eigen::VectorXf &vert_kernel,
pcl::PointCloud<float> &output) const
{
std::cout << ">>> convolve cpp" << std::endl;
pcl::PointCloud<float> tmp (input.width, input.height) ;
convolveRows (input, horiz_kernel, tmp);
convolveCols (tmp, vert_kernel, output);
std::cout << "<<< convolve cpp" << std::endl;
}
/** Convolve a float image in the 2 directions
* \param[in] input image to convolve
* \param[in] field_accessor a field accessor
* \param[in] horiz_kernel kernel for convolving rows
* \param[in] vert_kernel kernel for convolving columns
* \param[out] output the convolved image
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
* output.cols () < input.cols () then output is resized to input sizes.
*/
template <typename PointT> inline void
convolve (const pcl::PointCloud<PointT> &input,
std::function <float (const PointT& p)> field_accessor,
const Eigen::VectorXf &horiz_kernel,
const Eigen::VectorXf &vert_kernel,
pcl::PointCloud<float> &output) const
{
std::cout << ">>> convolve hpp" << std::endl;
pcl::PointCloud<float> tmp (input.width, input.height);
convolveRows<PointT>(input, field_accessor, horiz_kernel, tmp);
convolveCols(tmp, vert_kernel, output);
std::cout << "<<< convolve hpp" << std::endl;
}
/** Computes float image gradients using a gaussian kernel and gaussian kernel
* derivative.
* \param[in] input image to compute gardients for
* \param[in] gaussian_kernel the gaussian kernel to be used
* \param[in] gaussian_kernel_derivative the associated derivative
* \param[out] grad_x gradient along X direction
* \param[out] grad_y gradient along Y direction
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
* output.cols () < input.cols () then output is resized to input sizes.
*/
inline void
computeGradients (const pcl::PointCloud<float> &input,
const Eigen::VectorXf &gaussian_kernel,
const Eigen::VectorXf &gaussian_kernel_derivative,
pcl::PointCloud<float> &grad_x,
pcl::PointCloud<float> &grad_y) const
{
convolve (input, gaussian_kernel_derivative, gaussian_kernel, grad_x);
convolve (input, gaussian_kernel, gaussian_kernel_derivative, grad_y);
}
/** Computes float image gradients using a gaussian kernel and gaussian kernel
* derivative.
* \param[in] input image to compute gardients for
* \param[in] field_accessor a field accessor
* \param[in] gaussian_kernel the gaussian kernel to be used
* \param[in] gaussian_kernel_derivative the associated derivative
* \param[out] grad_x gradient along X direction
* \param[out] grad_y gradient along Y direction
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
* output.cols () < input.cols () then output is resized to input sizes.
*/
template <typename PointT> inline void
computeGradients (const pcl::PointCloud<PointT> &input,
std::function <float (const PointT& p)> field_accessor,
const Eigen::VectorXf &gaussian_kernel,
const Eigen::VectorXf &gaussian_kernel_derivative,
pcl::PointCloud<float> &grad_x,
pcl::PointCloud<float> &grad_y) const
{
convolve<PointT> (input, field_accessor, gaussian_kernel_derivative, gaussian_kernel, grad_x);
convolve<PointT> (input, field_accessor, gaussian_kernel, gaussian_kernel_derivative, grad_y);
}
/** Smooth image using a gaussian kernel.
* \param[in] input image
* \param[in] gaussian_kernel the gaussian kernel to be used
* \param[out] output the smoothed image
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
* output.cols () < input.cols () then output is resized to input sizes.
*/
inline void
smooth (const pcl::PointCloud<float> &input,
const Eigen::VectorXf &gaussian_kernel,
pcl::PointCloud<float> &output) const
{
convolve (input, gaussian_kernel, gaussian_kernel, output);
}
/** Smooth image using a gaussian kernel.
* \param[in] input image
* \param[in] field_accessor a field accessor
* \param[in] gaussian_kernel the gaussian kernel to be used
* \param[out] output the smoothed image
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
* output.cols () < input.cols () then output is resized to input sizes.
*/
template <typename PointT> inline void
smooth (const pcl::PointCloud<PointT> &input,
std::function <float (const PointT& p)> field_accessor,
const Eigen::VectorXf &gaussian_kernel,
pcl::PointCloud<float> &output) const
{
convolve<PointT> (input, field_accessor, gaussian_kernel, gaussian_kernel, output);
}
};
}
#include <pcl/common/impl/gaussian.hpp>