合并提交

This commit is contained in:
jerryzeng 2025-08-23 21:42:38 +08:00
commit 18c5ec1c11
7 changed files with 475 additions and 8 deletions

View File

@ -129,6 +129,33 @@ typedef struct
#define CALIB_CIRCLE_GRID 2
#define CALIB_CHARUCO 3
void initForwardRectMap(const cv::Mat& K, const cv::Mat& D, const cv::Mat& R,
const cv::Mat& newK, const cv::Size& size, cv::Mat& mapX, cv::Mat& mapY) {
std::vector<cv::Point2f> srcPts;
for (int r = 0; r < size.height; r++) {
for (int c = 0; c < size.width; c++) {
srcPts.push_back(cv::Point2f(c, r));
}
}
std::vector<cv::Point2f> dstPts;
cv::undistortPoints(srcPts, dstPts, K, D, R, newK);
mapX = cv::Mat::zeros(size.height, size.width, CV_32FC1);
mapY = cv::Mat::zeros(size.height, size.width, CV_32FC1);
int idx = 0;
for (int r = 0; r < size.height; r++) {
for (int c = 0; c < size.width; c++) {
mapX.ptr<float>(r)[c] = dstPts[idx].x;
mapY.ptr<float>(r)[c] = dstPts[idx].y;
idx++;
}
}
return;
}
#define CALIB_TEST_GROUP 4
int main()
{
@ -251,7 +278,8 @@ int main()
#else
double alpha = 0.4; // 0.4;
newCamMatrix = cv::getOptimalNewCameraMatrix(K, D, imageSize, alpha, imageSize, 0);
cv::initUndistortRectifyMap(K, D, cv::Mat(), newCamMatrix, imageSize, CV_32FC1, map_x, map_y);
//cv::initUndistortRectifyMap(K, D, cv::Mat(), newCamMatrix, imageSize, CV_32FC1, map_x, map_y);
initForwardRectMap(K, D, cv::Mat(), newCamMatrix, imageSize, map_x, map_y);
#endif
// 生成系数表
@ -315,7 +343,7 @@ int main()
sg_readCalibKD(calibKDName, K, D);
#endif
#if ENABLE_GEN_IMAGE
#if ENABLE_GEN_IMAGE
cv::Vec4f laserPE;
generateLaserLine(10.f, 5.f, laserPE);
std::cout << "generateLaserLine pe: " << laserPE << std::endl;
@ -339,7 +367,7 @@ int main()
cv::Mat image = generateVirtualLaserLineImage(laserPE, pe, K, D, imageSize);
#if ENABLE_DEBUG
#if ENABLE_DEBUG
cv::Mat color = image.clone();
cv::resize(color, color, cv::Size(), 0.5, 0.5);
cv::imshow("image", color);

View File

@ -147,11 +147,13 @@
<ItemGroup>
<ClCompile Include="camCalib.cpp" />
<ClCompile Include="lineDetection_steger.cpp" />
<ClCompile Include="onnxDetector.cpp" />
<ClCompile Include="sourceCode\FitMapParam.cpp" />
<ClCompile Include="sourceCode\MonoLaserCalibrate.cpp" />
</ItemGroup>
<ItemGroup>
<ClInclude Include="lineDetection_steger.h" />
<ClInclude Include="onnxDetector.h" />
<ClInclude Include="sourceCode\FitMapParam.h" />
<ClInclude Include="sourceCode\MonoLaserCalibrate.h" />
</ItemGroup>

View File

@ -27,6 +27,9 @@
<ClCompile Include="lineDetection_steger.cpp">
<Filter>源文件</Filter>
</ClCompile>
<ClCompile Include="onnxDetector.cpp">
<Filter>源文件</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="sourceCode\MonoLaserCalibrate.h">
@ -38,5 +41,8 @@
<ClInclude Include="lineDetection_steger.h">
<Filter>头文件</Filter>
</ClInclude>
<ClInclude Include="onnxDetector.h">
<Filter>头文件</Filter>
</ClInclude>
</ItemGroup>
</Project>

BIN
camCalib/detectCB.onnx Normal file

Binary file not shown.

302
camCalib/onnxDetector.cpp Normal file
View File

@ -0,0 +1,302 @@
#include "onnxDetector.h"
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
using namespace cv::dnn;
class OnnxDetectorImpl :
public OnnxDetector
{
public:
OnnxDetectorImpl() :
classNum_(1), imgStride_(32), confidence_(0.25f),
scoreThreshold_(0.45f), nmsThreshold_(0.3f){};
~OnnxDetectorImpl() {};
public:
virtual int loadOnnxModel(const char* filename, cv::Size2f inferSize) override;
virtual std::vector<Detection2d> detect(cv::Mat image) override;
private:
vector<Mat> preProcess(Mat& input_image);
vector<Detection2d> postProcess(Mat& input_image, vector<Mat>& outputs);
private:
int classNum_;
int imgStride_;
float confidence_;
float scoreThreshold_;
float nmsThreshold_;
cv::Size2f size_;
cv::dnn::Net network_;
};
void letterbox(const cv::Mat& image, cv::Mat& outImage,
const cv::Size& newShape = cv::Size(640, 640),
const cv::Scalar& color = cv::Scalar(114, 114, 114),
bool auto_ = true,
bool scaleFill = false,
bool scaleUp = true,
int stride = 32)
{
cv::Size shape = image.size();
float r = std::min((float)newShape.height / (float)shape.height,
(float)newShape.width / (float)shape.width);
if (!scaleUp)
r = std::min(r, 1.0f);
float ratio[2]{ r, r };
int newUnpad[2]{ (int)std::round((float)shape.width * r),
(int)std::round((float)shape.height * r) };
auto dw = (float)(newShape.width - newUnpad[0]);
auto dh = (float)(newShape.height - newUnpad[1]);
if (auto_)
{
dw = (float)((int)dw % stride);
dh = (float)((int)dh % stride);
}
else if (scaleFill)
{
dw = 0.0f;
dh = 0.0f;
newUnpad[0] = newShape.width;
newUnpad[1] = newShape.height;
ratio[0] = (float)newShape.width / (float)shape.width;
ratio[1] = (float)newShape.height / (float)shape.height;
}
dw /= 2.0f;
dh /= 2.0f;
if (shape.width != newUnpad[0] && shape.height != newUnpad[1])
{
cv::resize(image, outImage, cv::Size(newUnpad[0], newUnpad[1]));
}
int top = int(std::round(dh - 0.1f));
int bottom = int(std::round(dh + 0.1f));
int left = int(std::round(dw - 0.1f));
int right = int(std::round(dw + 0.1f));
cv::copyMakeBorder(outImage, outImage, top, bottom, left, right, cv::BORDER_CONSTANT, color);
}
// Ô¤´¦Àí
vector<Mat> OnnxDetectorImpl::preProcess(Mat& input_image)
{
Mat blob;
blobFromImage(input_image, blob, 1. / 255., Size(size_), Scalar(), false, false);
network_.setInput(blob);
vector<std::string> names = network_.getUnconnectedOutLayersNames();
vector<Mat> outputs;
network_.forward(outputs, names);
return outputs;
}
// ºó´¦Àí
#if 1
vector<Detection2d> OnnxDetectorImpl::postProcess(Mat& input_image, vector<Mat>& outputs)
{
vector<int> class_ids;
vector<float> confidences;
vector<Rect> boxes;
float x_factor = input_image.cols / size_.width;
float y_factor = input_image.rows / size_.height;
float* data = (float*)outputs[0].data;
const int dimensions = 5 + classNum_;
//const int rows = 25200;
const int rows =(1 + 4 + 16) * (size_.width / imgStride_) * (size_.height / imgStride_);
for (int i = 0; i < rows; ++i)
{
#if 1
float confidence = data[rows * 4 + i];
if (confidence > confidence_)
{
int centerX = (int)(data[rows * 0 + i] * x_factor);
int centerY = (int)(data[rows * 1 + i] * y_factor);
int width = (int)(data[rows * 2 + i] * x_factor);
int height = (int)(data[rows * 3 + i] * y_factor);
int left = centerX - width / 2;
int top = centerY - height / 2;
boxes.emplace_back(left, top, width, height);
confidences.emplace_back(confidence);
class_ids.emplace_back(0);
}
#else
float confidence = data[4];
if (confidence >= confidence_)
{
float* classes_scores = data + 5;
Mat scores(1, classNum_, CV_32FC1, classes_scores);
Point class_id;
double max_class_score;
minMaxLoc(scores, 0, &max_class_score, 0, &class_id);
if (max_class_score > scoreThreshold_)
{
confidences.push_back(confidence);
class_ids.push_back(class_id.x);
float cx = data[0];
float cy = data[1];
float w = data[2];
float h = data[3];
int left = int((cx - 0.5 * w) * x_factor);
int top = int((cy - 0.5 * h) * y_factor);
int width = int(w * x_factor);
int height = int(h * y_factor);
boxes.push_back(Rect(left, top, width, height));
}
}
#endif
//data += dimensions;
}
vector<Detection2d> res2d;
vector<int> indices;
NMSBoxes(boxes, confidences, scoreThreshold_, nmsThreshold_, indices);
for (int i = 0; i < indices.size(); i++)
{
int idx = indices[i];
Rect box = boxes[idx];
int left = box.x;
int top = box.y;
int width = box.width;
int height = box.height;
//rectangle(output_image, Point(left, top), Point(left + width, top + height), BLUE, 3 * THICKNESS);
//string label = format("%.2f", confidences[idx]);
//label = class_name[class_ids[idx]] + ":" + label;
//draw_label(output_image, label, left, top);
Detection2d d2d;
d2d.bbox = box;
d2d.classIdx = idx;
d2d.confidence = confidences[idx];
res2d.push_back(d2d);
}
return res2d;
}
#else
inline float sigmoid(float x)
{
return 1.f / (1.f + exp(-x));
}
vector<Detection2d> OnnxDetectorImpl::postProcess(Mat& cv_src, vector<Mat>& outs)
{
std::vector<int> classIds;
std::vector<float> confidences;
std::vector<cv::Rect> boxes;
int strides[] = { 8, 16, 32 };
std::vector<std::vector<int> > anchors = {
{ 10,13, 16,30, 33,23 },
{ 30,61, 62,45, 59,119 },
{ 116,90, 156,198, 373,326 }
};
for (size_t k = 0; k < outs.size(); k++) {
float* data = outs[k].ptr<float>();
int stride = strides[k];
int num_classes = outs[k].size[4] - 5;
for (int i = 0; i < outs[k].size[2]; i++) {
for (int j = 0; j < outs[k].size[3]; j++) {
for (int a = 0; a < outs[k].size[1]; ++a) {
float* record = data + a * outs[k].size[2] * outs[k].size[3] * outs[k].size[4] +
i * outs[k].size[3] * outs[k].size[4] + j * outs[k].size[4];
float* cls_ptr = record + 5;
for (int cls = 0; cls < num_classes; cls++) {
float score = sigmoid(cls_ptr[cls]) * sigmoid(record[4]);
if (score > scoreThreshold_) {
float cx = (sigmoid(record[0]) * 2.f - 0.5f + (float)j) * (float)stride;
float cy = (sigmoid(record[1]) * 2.f - 0.5f + (float)i) * (float)stride;
float w = pow(sigmoid(record[2]) * 2.f, 2) * anchors[k][2 * a];
float h = pow(sigmoid(record[3]) * 2.f, 2) * anchors[k][2 * a + 1];
float x1 = std::max(0, std::min(cv_src.cols, int((cx - w / 2.f) * (float)cv_src.cols / (float)size_.width)));
float y1 = std::max(0, std::min(cv_src.rows, int((cy - h / 2.f) * (float)cv_src.rows / (float)size_.width)));
float x2 = std::max(0, std::min(cv_src.cols, int((cx + w / 2.f) * (float)cv_src.cols / (float)size_.width)));
float y2 = std::max(0, std::min(cv_src.rows, int((cy + h / 2.f) * (float)cv_src.rows / (float)size_.width)));
classIds.push_back(cls);
confidences.push_back(score);
boxes.push_back(cv::Rect(cv::Point(x1, y1), cv::Point(x2, y2)));
}
}
}
}
}
}
vector<Detection2d> res2d;
std::vector<int> indices;
cv::dnn::NMSBoxes(boxes, confidences, scoreThreshold_, nmsThreshold_, indices);
for (size_t i = 0; i < indices.size(); i++){
int idx = indices[i];
cv::Rect box = boxes[idx];
//drawPred(classIds[idx], confidences[idx], box.x, box.y,
// box.x + box.width, box.y + box.height, cv_src, classes);
Detection2d d2d;
d2d.classIdx = classIds[idx];
d2d.bbox = box;
d2d.confidence = confidences[idx];
res2d.push_back(d2d);
}
return res2d;
}
#endif
int OnnxDetectorImpl::loadOnnxModel(const char* filename, cv::Size2f inferSize) {
std::vector< std::pair<cv::dnn::Backend, cv::dnn::Target> > backends = cv::dnn::getAvailableBackends();
for (std::pair<cv::dnn::Backend, cv::dnn::Target>& det : backends) {
std::cout << "Detected Valid Backends: " << det.first << ", " << det.second << std::endl;
}
size_ = inferSize;
network_ = cv::dnn::readNet(filename);
//std::vector< std::pair<cv::dnn::Backend, cv::dnn::Target> > backends = cv::dnn::getAvailableBackends();
//for (std::pair<cv::dnn::Backend, cv::dnn::Target>& det : backends) {
// std::cout << "Detected Valid Backends: " << det.first << ", " << det.second << std::endl;
//}
//network_.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
//network_.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);
return 0;
}
std::vector<Detection2d> OnnxDetectorImpl::detect(cv::Mat image) {
std::vector<Detection2d> res2d;
if (image.empty() || network_.empty())
return res2d;
const int width = std::max(image.rows, image.cols);
cv::Mat img = cv::Mat::zeros(image.rows, image.cols, image.type());
image.copyTo(img(cv::Rect(0, 0, image.cols, image.rows)));
vector<Mat> detections = preProcess(img);
return postProcess(img, detections);
}
OnnxDetector* OnnxDetector::CreateInstance() {
return new OnnxDetectorImpl();
}

21
camCalib/onnxDetector.h Normal file
View File

@ -0,0 +1,21 @@
#pragma once
#include <opencv2/core/core.hpp>
typedef struct Detection2d {
int classIdx;
float confidence;
cv::Rect bbox;
}_detection2d;
class OnnxDetector
{
public:
static OnnxDetector* CreateInstance();
public:
virtual int loadOnnxModel(const char* filename, cv::Size2f inferSize) = 0;
virtual std::vector<Detection2d> detect(cv::Mat image) = 0;
};

View File

@ -7,6 +7,9 @@
#include "MonoLaserCalibrate.h"
#include "../lineDetection_steger.h"
#include "../onnxDetector.h"
OnnxDetector* cbDetector = nullptr;
/*Breif角点检测函数*/
void detectCorners(const cv::Mat& img,
const cv::Size& patternSize,
@ -42,11 +45,116 @@ void detectCirclePoints(const cv::Mat& img,
//需要将圆点外的背景去除,否则复杂的背景会导致检测失败
//使用连通域检测
cv::Mat grayBin;
cv::Mat roiGray;
{
#if 1
if (nullptr == cbDetector) {
cbDetector = OnnxDetector::CreateInstance();
cbDetector->loadOnnxModel("detectCB.onnx", cv::Size(640, 640));
}
std::vector<Detection2d> result2d = cbDetector->detect(img);
for (size_t i = 0; i < result2d.size(); i++) {
cv::Rect roi = result2d[i].bbox;
if (roi.x < 0)
roi.x = 0;
if (roi.y < 0)
roi.y = 0;
if ((roi.x + roi.width) > gray.cols)
roi.width = gray.cols - roi.x;
if ((roi.y + roi.height) > gray.rows)
roi.height = gray.rows - roi.y;
if (roiGray.empty()) {
roiGray = cv::Mat::zeros(gray.rows, gray.cols, CV_8UC1);
gray(roi).copyTo(roiGray(roi));
}
else {
gray(roi).copyTo(roiGray(roi));
}
}
#ifdef _DEBUG
cv::Mat result = img.clone();
for (size_t i = 0; i < result2d.size(); i++) {
cv::rectangle(img, result2d[i].bbox, cv::Scalar(0, 255, 0), 2);
}
cv::imwrite("_cbResult.png", result);
#endif
#else
cv::Mat grayBin;
cv::adaptiveThreshold(gray, grayBin, 255,
cv::ADAPTIVE_THRESH_GAUSSIAN_C, cv::THRESH_BINARY_INV, 9, 2);
cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, { 3,3 });
cv::morphologyEx(grayBin, grayBin, cv::MORPH_OPEN, kernel);
cv::morphologyEx(grayBin, grayBin, cv::MORPH_CLOSE, kernel);
//cv::connectedComponents();
std::vector<std::vector<cv::Point>> contours;
std::vector<cv::Vec4i> hierarchy;
cv::findContours(grayBin, contours, hierarchy, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE);
#ifdef _DEBUG
cv::Mat result = grayBin.clone();
#endif
cv::Rect roi;
const int N = patternSize.area();
for (int i = 0; i < contours.size(); ++i) {
// 检查当前轮廓是否为父轮廓且子轮廓数量为N
int childCount = 0;
int childIdx = hierarchy[i][2]; // 第一个子轮廓索引
while (childIdx != -1) {
childCount++;
childIdx = hierarchy[childIdx][0]; // 下一个同级子轮廓
}
if (childCount >= N) { // 子数量匹配
#ifdef _DEBUG
cv::drawContours(result, contours, i, cv::Scalar(0, 255, 0), 2);
#endif
cv::Point lt(10000, 10000), rb(0, 0);
for (const cv::Point pt : contours[i]) {
lt.x = std::min(lt.x, pt.x);
rb.x = std::max(rb.x, pt.x);
lt.y = std::min(lt.y, pt.y);
rb.y = std::max(rb.y, pt.y);
}
roi = cv::Rect(lt, rb);
if (roiGray.empty()) {
roiGray = cv::Mat::zeros(gray.rows, gray.cols, CV_8UC1);
gray(roi).copyTo(roiGray(roi));
}
else {
gray(roi).copyTo(roiGray(roi));
}
// 标记子轮廓(可选)
childIdx = hierarchy[i][2];
while (childIdx != -1) {
#ifdef _DEBUG
cv::drawContours(result, contours, childIdx, cv::Scalar(255, 0, 0), 1);
#endif
childIdx = hierarchy[childIdx][0];
}
}
}
#ifdef _DEBUG
cv::imwrite("_cbContour.png", result);
#endif
#endif
#ifdef _DEBUG
if (false == roiGray.empty())
cv::imwrite("_roiGray.png", roiGray);
#endif
}
// 检测圆形网格
bool found = cv::findCirclesGrid(gray, patternSize, corners, cv::CALIB_CB_SYMMETRIC_GRID);
bool found = cv::findCirclesGrid(roiGray.empty() ? gray : roiGray, patternSize, corners, cv::CALIB_CB_SYMMETRIC_GRID);
return;
}