#include #include #include #include #include #include "direct.h" #include #include "SG_sieveNodeDetection_Export.h" #include #include SVzNL3DPoint _ptRotate(SVzNL3DPoint pt3D, double matrix3d[9]) { SVzNL3DPoint _r_pt; _r_pt.x = pt3D.x * matrix3d[0] + pt3D.y * matrix3d[1] + pt3D.z * matrix3d[2]; _r_pt.y = pt3D.x * matrix3d[3] + pt3D.y * matrix3d[4] + pt3D.z * matrix3d[5]; _r_pt.z = pt3D.x * matrix3d[6] + pt3D.y * matrix3d[7] + pt3D.z * matrix3d[8]; return _r_pt; } #define DATA_VER_OLD 0 #define DATA_VER_NEW 1 #define DATA_VER_FROM_CUSTOM 2 #define VZ_LASER_LINE_PT_MAX_NUM 4096 SVzNLXYZRGBDLaserLine* vzReadLaserScanPointFromFile_XYZRGB(const char* fileName, int* scanLineNum, float* scanV, int* dataCalib, int* scanMaxStamp, int* canClockUnit) { std::ifstream inputFile(fileName); std::string linedata; if (inputFile.is_open() == false) return NULL; SVzNLXYZRGBDLaserLine* _scanLines = NULL; int lines = 0; int dataElements = 4; int firstIndex = -1; int dataFileVer = DATA_VER_OLD; std::getline(inputFile, linedata); //第一行 int lineNum = 0; if (0 == strncmp("LineNum:", linedata.c_str(), 8)) { dataFileVer = DATA_VER_NEW; sscanf_s(linedata.c_str(), "LineNum:%d", &lines); if (lines == 0) return NULL; lineNum = lines; _scanLines = (SVzNLXYZRGBDLaserLine*)malloc(sizeof(SVzNLXYZRGBDLaserLine) * (lineNum + 1)); memset(_scanLines, 0, sizeof(SVzNLXYZRGBDLaserLine) * (lineNum + 1)); if (scanLineNum) *scanLineNum = lines; } else if (0 == strncmp("LineNum_", linedata.c_str(), 8)) { dataFileVer = DATA_VER_OLD; sscanf_s(linedata.c_str(), "LineNum_%d", &lines); if (lines == 0) return NULL; lineNum = lines; _scanLines = (SVzNLXYZRGBDLaserLine*)malloc(sizeof(SVzNLXYZRGBDLaserLine) * (lineNum + 1)); memset(_scanLines, 0, sizeof(SVzNLXYZRGBDLaserLine) * (lineNum + 1)); if (scanLineNum) *scanLineNum = lines; } if (_scanLines == NULL) return NULL; int ptNum = 0; int lineIdx = -1; int ptIdx = 0; SVzNLPointXYZRGBA* p3DPoint = NULL; if (dataFileVer == DATA_VER_NEW) { while (getline(inputFile, linedata)) { if (0 == strncmp("ScanSpeed:", linedata.c_str(), 10)) { double lineV = 0; sscanf_s(linedata.c_str(), "ScanSpeed:%lf", &lineV); if (scanV) *scanV = (float)lineV; } else if (0 == strncmp("PointAdjust:", linedata.c_str(), 12)) { int ptAdjusted = 0; sscanf_s(linedata.c_str(), "PointAdjust:%d", &ptAdjusted); if (dataCalib) *dataCalib = ptAdjusted; } else if (0 == strncmp("MaxTimeStamp:", linedata.c_str(), 13)) { unsigned int maxTimeStamp = 0; unsigned int timePerStamp = 0; sscanf_s(linedata.c_str(), "MaxTimeStamp:%u_%u", &maxTimeStamp, &timePerStamp); if (scanMaxStamp) *scanMaxStamp = maxTimeStamp; if (canClockUnit) *canClockUnit = timePerStamp; } else if (0 == strncmp("Line_", linedata.c_str(), 5)) { int lineIndex; unsigned int timeStamp; sscanf_s(linedata.c_str(), "Line_%d_%u_%d", &lineIndex, &timeStamp, &ptNum); if (firstIndex < 0) firstIndex = lineIndex; lineIndex = lineIndex - firstIndex; if ((lineIndex < 0) || (lineIndex >= lines)) break; //new Line lineIdx++; if (ptNum > 0) { p3DPoint = (SVzNLPointXYZRGBA*)malloc(sizeof(SVzNLPointXYZRGBA) * ptNum); memset(p3DPoint, 0, sizeof(SVzNLPointXYZRGBA) * ptNum); } else p3DPoint = NULL; _scanLines[lineIdx].nPointCnt = 0; _scanLines[lineIdx].nTimeStamp = timeStamp; _scanLines[lineIdx].p3DPoint = p3DPoint; } else if (0 == strncmp("{", linedata.c_str(), 1)) { float X, Y, Z; int imageY = 0; float leftX, leftY; float rightX, rightY; int r = -1, g = -1, b = -1; sscanf_s(linedata.c_str(), "{%f,%f,%f,%f,%f,%f }-{%f,%f}-{%f,%f}", &X, &Y, &Z, &r, &g, &b, &leftX, &leftY, &rightX, &rightY); int id = _scanLines[lineIdx].nPointCnt; if (id < ptNum) { p3DPoint[id].x = X; p3DPoint[id].y = Y; p3DPoint[id].z = Z; p3DPoint[id].nRGB = 0; _scanLines[lineIdx].nPointCnt = id + 1; } } } } else if (dataFileVer == DATA_VER_OLD) { while (getline(inputFile, linedata)) { if (0 == strncmp("DataElements_", linedata.c_str(), 13)) { sscanf_s(linedata.c_str(), "DataElements_%d", &dataElements); if ((dataElements != 3) && (dataElements != 4)) break; } if (0 == strncmp("LineV_", linedata.c_str(), 6)) { double lineV = 0; sscanf_s(linedata.c_str(), "LineV_%lf", &lineV); } else if (0 == strncmp("Line_", linedata.c_str(), 5)) { int lineIndex; unsigned int timeStamp; sscanf_s(linedata.c_str(), "Line_%d_%u", &lineIndex, &timeStamp); #if 0 if (scanLineListTail == NULL) firstIndex = lineIndex; #endif lineIndex = lineIndex - firstIndex; if ((lineIndex < 0) || (lineIndex >= lines)) break; //new Line //new Line lineIdx++; p3DPoint = (SVzNLPointXYZRGBA*)malloc(sizeof(SVzNLPointXYZRGBA) * VZ_LASER_LINE_PT_MAX_NUM); memset(p3DPoint, 0, sizeof(SVzNLPointXYZRGBA) * VZ_LASER_LINE_PT_MAX_NUM); _scanLines[lineIdx].nPointCnt = 0; _scanLines[lineIdx].nTimeStamp = timeStamp; _scanLines[lineIdx].p3DPoint = p3DPoint; } else if (0 == strncmp("(", linedata.c_str(), 1)) { float X, Y, Z; int imageY = 0; if (dataElements == 4) sscanf_s(linedata.c_str(), "(%f,%f,%f,%d)", &X, &Y, &Z, &imageY); else sscanf_s(linedata.c_str(), "(%f,%f,%f)", &X, &Y, &Z); int id = _scanLines[lineIdx].nPointCnt; if (id < VZ_LASER_LINE_PT_MAX_NUM) { p3DPoint[id].x = X; p3DPoint[id].y = Y; p3DPoint[id].z = Z; p3DPoint[id].nRGB = 0; _scanLines[lineIdx].nPointCnt = id + 1; } } } } inputFile.close(); return _scanLines; } SVzNL3DLaserLine* vzReadLaserScanPointFromFile_XYZ(const char* fileName, int* scanLineNum, float* scanV, int* dataCalib, int* scanMaxStamp, int* canClockUnit) { std::ifstream inputFile(fileName); std::string linedata; if (inputFile.is_open() == false) return NULL; SVzNL3DLaserLine* _scanLines = NULL; int lines = 0; int dataElements = 4; int firstIndex = -1; int dataFileVer = DATA_VER_OLD; std::getline(inputFile, linedata); //第一行 int lineNum = 0; if (0 == strncmp("LineNum:", linedata.c_str(), 8)) { dataFileVer = DATA_VER_NEW; sscanf_s(linedata.c_str(), "LineNum:%d", &lines); if (lines == 0) return NULL; lineNum = lines; _scanLines = (SVzNL3DLaserLine*)malloc(sizeof(SVzNL3DLaserLine) * (lineNum + 1)); memset(_scanLines, 0, sizeof(SVzNL3DLaserLine) * (lineNum + 1)); if (scanLineNum) *scanLineNum = lines; } else if (0 == strncmp("LineNum_", linedata.c_str(), 8)) { dataFileVer = DATA_VER_OLD; sscanf_s(linedata.c_str(), "LineNum_%d", &lines); if (lines == 0) return NULL; lineNum = lines; _scanLines = (SVzNL3DLaserLine*)malloc(sizeof(SVzNL3DLaserLine) * (lineNum + 1)); memset(_scanLines, 0, sizeof(SVzNL3DLaserLine) * (lineNum + 1)); if (scanLineNum) *scanLineNum = lines; } if (_scanLines == NULL) return NULL; int ptNum = 0; int lineIdx = -1; int ptIdx = 0; SVzNL3DPosition* p3DPoint = NULL; if (dataFileVer == DATA_VER_NEW) { while (getline(inputFile, linedata)) { if (0 == strncmp("ScanSpeed:", linedata.c_str(), 10)) { double lineV = 0; sscanf_s(linedata.c_str(), "ScanSpeed:%lf", &lineV); if (scanV) *scanV = (float)lineV; } else if (0 == strncmp("PointAdjust:", linedata.c_str(), 12)) { int ptAdjusted = 0; sscanf_s(linedata.c_str(), "PointAdjust:%d", &ptAdjusted); if (dataCalib) *dataCalib = ptAdjusted; } else if (0 == strncmp("MaxTimeStamp:", linedata.c_str(), 13)) { unsigned int maxTimeStamp = 0; unsigned int timePerStamp = 0; sscanf_s(linedata.c_str(), "MaxTimeStamp:%u_%u", &maxTimeStamp, &timePerStamp); if (scanMaxStamp) *scanMaxStamp = maxTimeStamp; if (canClockUnit) *canClockUnit = timePerStamp; } else if (0 == strncmp("Line_", linedata.c_str(), 5)) { int lineIndex; unsigned int timeStamp; sscanf_s(linedata.c_str(), "Line_%d_%u_%d", &lineIndex, &timeStamp, &ptNum); if (firstIndex < 0) firstIndex = lineIndex; lineIndex = lineIndex - firstIndex; if ((lineIndex < 0) || (lineIndex >= lines)) break; //new Line lineIdx++; if (ptNum > 0) { p3DPoint = (SVzNL3DPosition*)malloc(sizeof(SVzNL3DPosition) * ptNum); memset(p3DPoint, 0, sizeof(SVzNL3DPosition) * ptNum); } else p3DPoint = NULL; _scanLines[lineIdx].nPositionCnt = 0; _scanLines[lineIdx].nTimeStamp = timeStamp; _scanLines[lineIdx].p3DPosition = p3DPoint; } else if (0 == strncmp("{", linedata.c_str(), 1)) { float X, Y, Z; int imageY = 0; float leftX, leftY; float rightX, rightY; sscanf_s(linedata.c_str(), "{%f,%f,%f}-{%f,%f}-{%f,%f}", &X, &Y, &Z, &leftX, &leftY, &rightX, &rightY); int id = _scanLines[lineIdx].nPositionCnt; if (id < ptNum) { p3DPoint[id].pt3D.x = X; p3DPoint[id].pt3D.y = Y; p3DPoint[id].pt3D.z = Z; _scanLines[lineIdx].nPositionCnt = id + 1; } } } } else if (dataFileVer == DATA_VER_OLD) { while (getline(inputFile, linedata)) { if (0 == strncmp("DataElements_", linedata.c_str(), 13)) { sscanf_s(linedata.c_str(), "DataElements_%d", &dataElements); if ((dataElements != 3) && (dataElements != 4)) break; } if (0 == strncmp("LineV_", linedata.c_str(), 6)) { double lineV = 0; sscanf_s(linedata.c_str(), "LineV_%lf", &lineV); } else if (0 == strncmp("Line_", linedata.c_str(), 5)) { int lineIndex; unsigned int timeStamp; sscanf_s(linedata.c_str(), "Line_%d_%u", &lineIndex, &timeStamp); #if 0 if (scanLineListTail == NULL) firstIndex = lineIndex; #endif lineIndex = lineIndex - firstIndex; if ((lineIndex < 0) || (lineIndex >= lines)) break; //new Line //new Line lineIdx++; p3DPoint = (SVzNL3DPosition*)malloc(sizeof(SVzNL3DPosition) * VZ_LASER_LINE_PT_MAX_NUM); memset(p3DPoint, 0, sizeof(SVzNL3DPosition) * VZ_LASER_LINE_PT_MAX_NUM); _scanLines[lineIdx].nPositionCnt = 0; _scanLines[lineIdx].nTimeStamp = timeStamp; _scanLines[lineIdx].p3DPosition = p3DPoint; } else if (0 == strncmp("(", linedata.c_str(), 1)) { float X, Y, Z; int imageY = 0; if (dataElements == 4) sscanf_s(linedata.c_str(), "(%f,%f,%f,%d)", &X, &Y, &Z, &imageY); else sscanf_s(linedata.c_str(), "(%f,%f,%f)", &X, &Y, &Z); int id = _scanLines[lineIdx].nPositionCnt; if (id < VZ_LASER_LINE_PT_MAX_NUM) { p3DPoint[id].pt3D.x = X; p3DPoint[id].pt3D.y = Y; p3DPoint[id].pt3D.z = Z; _scanLines[lineIdx].nPositionCnt = id + 1; } } } } inputFile.close(); return _scanLines; } SVzNL3DLaserLine* _convertToGridData_XYZRGB(SVzNLXYZRGBDLaserLine* laser3DPoints, int lineNum, double _F, double* camPoseR, int* outLineNum) { int min_y = 100000000; int max_y = -10000000; int validStartLine = -1; int validEndLine = -1; for (int line = 0; line < lineNum; line++) { if (laser3DPoints[line].nPointCnt > 0) { if (validStartLine < 0) { validStartLine = line; validEndLine = line; } else validEndLine = line; } for (int i = 0; i < laser3DPoints[line].nPointCnt; i++) { SVzNLPointXYZRGBA* a_pt = &laser3DPoints[line].p3DPoint[i]; if (a_pt->z > 1e-4) { double v = _F * a_pt->y / a_pt->z + 2000; a_pt->nRGB = (int)(v + 0.5); max_y = max_y < (int)a_pt->nRGB ? (int)a_pt->nRGB : max_y; min_y = min_y > (int)a_pt->nRGB ? (int)a_pt->nRGB : min_y; } } } if (min_y == 100000000) return NULL; int vldLineNum = validEndLine - validStartLine + 1; *outLineNum = vldLineNum; int pt_counter = max_y - min_y + 1; SVzNL3DLaserLine* gridData = (SVzNL3DLaserLine*)malloc(sizeof(SVzNL3DLaserLine) * (vldLineNum + 1)); memset(gridData, 0, sizeof(SVzNL3DLaserLine) * (vldLineNum + 1)); for (int line = validStartLine; line <= validEndLine; line++) { int gridLine = line - validStartLine; gridData[gridLine].nPositionCnt = pt_counter; gridData[gridLine].nTimeStamp = laser3DPoints[line].nTimeStamp; gridData[gridLine].p3DPosition = (SVzNL3DPosition*)malloc(sizeof(SVzNL3DPosition) * pt_counter); memset(gridData[gridLine].p3DPosition, 0, sizeof(SVzNL3DPosition) * pt_counter); for (int i = 0; i < laser3DPoints[line].nPointCnt; i++) { SVzNLPointXYZRGBA a_pt = laser3DPoints[line].p3DPoint[i]; if (a_pt.z > 1e-4) { int pt_id = a_pt.nRGB - min_y; SVzNL3DPoint tmp_pt = { a_pt.x, a_pt.y, a_pt.z }; SVzNL3DPoint r_pt = _ptRotate(tmp_pt, camPoseR); gridData[gridLine].p3DPosition[pt_id].pt3D.x = r_pt.x; gridData[gridLine].p3DPosition[pt_id].pt3D.y = r_pt.y; gridData[gridLine].p3DPosition[pt_id].pt3D.z = r_pt.z; } } } return gridData; } void _outputScanDataFile_self(char* fileName, SVzNL3DLaserLine* scanData, int lineNum, float lineV, int maxTimeStamp, int clockPerSecond) { std::ofstream sw(fileName); sw << "LineNum:" << lineNum << std::endl; sw << "DataType: 0" << std::endl; sw << "ScanSpeed:" << lineV << std::endl; sw << "PointAdjust: 1" << std::endl; sw << "MaxTimeStamp:" << maxTimeStamp << "_" << clockPerSecond << std::endl; for (int line = 0; line < lineNum; line++) { sw << "Line_" << line << "_" << scanData[line].nTimeStamp << "_" << scanData[line].nPositionCnt << std::endl; for (int i = 0; i < scanData[line].nPositionCnt; i++) { SVzNL3DPosition* pt3D = &scanData[line].p3DPosition[i]; float x = (float)pt3D->pt3D.x; float y = (float)pt3D->pt3D.y; float z = (float)pt3D->pt3D.z; sw << "{" << x << "," << y << "," << z << "}-"; sw << "{0,0}-{0,0}" << std::endl; } } sw.close(); } typedef struct { int r; int g; int b; }SG_color; void _outputScanDataFile_RGBD_obj_XYZ(char* fileName, SVzNL3DLaserLine* scanData, int lineNum, float lineV, int maxTimeStamp, int clockPerSecond, std::vector& objOps) { std::ofstream sw(fileName); int realLines = lineNum; if (objOps.size() > 0) realLines++; sw << "LineNum:" << realLines << std::endl; sw << "DataType: 0" << std::endl; sw << "ScanSpeed:" << lineV << std::endl; sw << "PointAdjust: 1" << std::endl; sw << "MaxTimeStamp:" << maxTimeStamp << "_" << clockPerSecond << std::endl; int maxLineIndex = 0; int max_stamp = 0; SG_color rgb = { 0, 0, 0 }; SG_color objColor[8] = { {245,222,179},//淡黄色 {210,105, 30},//巧克力色 {240,230,140},//黄褐色 {135,206,235},//天蓝色 {250,235,215},//古董白 {189,252,201},//薄荷色 {221,160,221},//梅红色 {188,143,143},//玫瑰红色 }; int size = 1; int nTimeStamp = 0; for (int line = 0; line < lineNum; line++) { sw << "Line_" << line << "_" << scanData[line].nTimeStamp << "_" << scanData[line].nPositionCnt << std::endl; nTimeStamp = scanData[line].nTimeStamp; for (int i = 0; i < scanData[line].nPositionCnt; i++) { SVzNL3DPosition* pt3D = &scanData[line].p3DPosition[i]; int vType = pt3D->nPointIdx & 0xff; int hType = vType >> 4; int objId = (pt3D->nPointIdx >> 16) & 0xffff; vType = vType & 0x0f; if (LINE_FEATURE_L_JUMP_H2L == vType) { rgb = { 255, 97, 0 }; size = 3; } else if (LINE_FEATURE_L_JUMP_L2H == vType) { rgb = { 255, 255, 0 }; size = 3; } else if (LINE_FEATURE_V_SLOPE == vType) { rgb = { 255, 0, 255 }; size = 3; } else if (LINE_FEATURE_L_SLOPE_H2L == vType) { rgb = { 0, 0, 255 }; size = 20; } else if ((LINE_FEATURE_LINE_ENDING_0 == vType) || (LINE_FEATURE_LINE_ENDING_1 == vType)) { rgb = { 255, 0, 0 }; size = 3; } else if (LINE_FEATURE_L_SLOPE_L2H == vType) //已经焊接过 { rgb = { 255, 255, 0 }; size = 20; } else if (LINE_FEATURE_L_JUMP_H2L == hType) { rgb = { 0, 0, 255 }; size = 3; } else if (LINE_FEATURE_L_JUMP_L2H == hType) { rgb = { 0, 255, 255 }; size = 3; } else if (LINE_FEATURE_V_SLOPE == hType) { rgb = { 0, 255, 0 }; size = 3; } else if (LINE_FEATURE_L_SLOPE_H2L == hType) { rgb = { 85, 107, 47 }; size = 3; } else if (LINE_FEATURE_L_SLOPE_L2H == hType) { rgb = { 0, 255, 154 }; size = 3; } else if ((LINE_FEATURE_LINE_ENDING_0 == hType) || (LINE_FEATURE_LINE_ENDING_1 == hType)) { rgb = { 255, 0, 0 }; size = 3; } else if (objId > 0) //目标 { rgb = objColor[objId % 8]; size = 5; } else { rgb = { 200, 200, 200 }; size = 1; } float x = (float)pt3D->pt3D.x; float y = (float)pt3D->pt3D.y; float z = (float)pt3D->pt3D.z; sw << "{" << x << "," << y << "," << z << "}-"; sw << "{0,0}-{0,0}-"; sw << "{" << rgb.r << "," << rgb.g << "," << rgb.b << "," << size << " }" << std::endl; } } if (objOps.size() > 0) { int ptNum = objOps.size(); sw << "Line_" << lineNum << "_" << (nTimeStamp + 1000) << "_" << ptNum << std::endl; for (int i = 0; i < objOps.size(); i++) { if (i == 0) rgb = { 255, 0, 0 }; else rgb = { 255, 255, 0 }; size = 25; float x = (float)objOps[i].x; float y = (float)objOps[i].y; float z = (float)objOps[i].z; sw << "{" << x << "," << y << "," << z << "}-"; sw << "{0,0}-{0,0}-"; sw << "{" << rgb.r << "," << rgb.g << "," << rgb.b << "," << size << " }" << std::endl; if (i == 0) { sw << "{" << x << "," << y << "," << z << "}-"; sw << "{0,0}-{0,0}-"; sw << "{" << rgb.r << "," << rgb.g << "," << rgb.b << "," << size << " }" << std::endl; } } } sw.close(); } void _XOYprojection_nodePos(cv::Mat& img, std::vector>& dataLines, std::vector& objOps, const double x_scale, const double y_scale, const SVzNLRangeD x_range, const SVzNLRangeD y_range) { int x_skip = 16; int y_skip = 16; cv::Vec3b rgb = cv::Vec3b(0, 0, 0); cv::Vec3b objColor[8] = { {245,222,179},//淡黄色 {210,105, 30},//巧克力色 {240,230,140},//黄褐色 {135,206,235},//天蓝色 {250,235,215},//古董白 {189,252,201},//薄荷色 {221,160,221},//梅红色 {188,143,143},//玫瑰红色 }; int size = 1; for (int line = 0; line < dataLines.size(); line++) { std::vector< SVzNL3DPosition>& a_line = dataLines[line]; for (int i = 0; i < a_line.size(); i++) { SVzNL3DPosition* pt3D = &a_line[i]; if (pt3D->pt3D.z < 1e-4) continue; int vType = pt3D->nPointIdx & 0xff; int hType = vType >> 4; int objId = (pt3D->nPointIdx >> 16) & 0xff; vType = vType & 0x0f; if (LINE_FEATURE_L_JUMP_H2L == vType) { rgb = { 255, 97, 0 }; size = 2; } else if (LINE_FEATURE_L_JUMP_L2H == vType) { rgb = { 255, 255, 0 }; size = 2; } else if (LINE_FEATURE_V_SLOPE == vType) { rgb = { 255, 0, 255 }; size = 2; } else if (LINE_FEATURE_L_SLOPE_H2L == vType) { rgb = { 160, 82, 45 }; size = 2; } else if ((LINE_FEATURE_LINE_ENDING_0 == vType) || (LINE_FEATURE_LINE_ENDING_1 == vType)) { rgb = { 255, 0, 0 }; size = 2; } else if (LINE_FEATURE_L_SLOPE_L2H == vType) { rgb = { 233, 150, 122 }; size = 2; } else if (LINE_FEATURE_L_JUMP_H2L == hType) { rgb = { 0, 0, 255 }; size = 2; } else if (LINE_FEATURE_L_JUMP_L2H == hType) { rgb = { 0, 255, 255 }; size = 2; } else if (LINE_FEATURE_V_SLOPE == hType) { rgb = { 0, 255, 0 }; size = 2; } else if (LINE_FEATURE_L_SLOPE_H2L == hType) { rgb = { 85, 107, 47 }; size = 2; } else if (LINE_FEATURE_L_SLOPE_L2H == hType) { rgb = { 0, 255, 154 }; size = 2; } else if ((LINE_FEATURE_LINE_ENDING_0 == hType) || (LINE_FEATURE_LINE_ENDING_1 == hType)) { rgb = { 255, 0, 0 }; size = 2; } else if (objId > 0) //目标 { rgb = objColor[objId % 8]; size = 1; } else { rgb = { 60, 60, 60 }; size = 1; } double x = pt3D->pt3D.x; double y = pt3D->pt3D.y; int px = (int)((x - x_range.min) / x_scale + x_skip); int py = (int)((y - y_range.min) / y_scale + y_skip); if (size == 1) img.at(py, px) = cv::Vec3b(rgb[2], rgb[1], rgb[0]); else cv::circle(img, cv::Point(px, py), size, cv::Scalar(rgb[2], rgb[1], rgb[0]), -1); } } if (objOps.size() > 0) { for (int i = 0; i < objOps.size(); i++) { if (i == 0) { rgb = { 255, 0, 0 }; size = 20; } else { rgb = { 255, 255, 0 }; size = 10; } int px = (int)((objOps[i].x - x_range.min) / x_scale + x_skip); int py = (int)((objOps[i].y - y_range.min) / y_scale + y_skip); cv::circle(img, cv::Point(px, py), size, cv::Scalar(rgb[2], rgb[1], rgb[0]), -1); } } } void _genXOYProjectionImage_nodePos(cv::String& fileName, SVzNL3DLaserLine* scanData, int lineNum, std::vector& nodeOps) { //统计X和Y的范围 std::vector> scan_lines; SVzNLRangeD x_range = { 0, -1 }; SVzNLRangeD y_range = { 0, -1 }; for (int line = 0; line < lineNum; line++) { std::vector< SVzNL3DPosition> a_line; for (int i = 0; i < scanData[line].nPositionCnt; i++) { SVzNL3DPosition* pt3D = &scanData[line].p3DPosition[i]; if (pt3D->pt3D.z < 1e-4) continue; a_line.push_back(*pt3D); if (x_range.max < x_range.min) { x_range.min = pt3D->pt3D.x; x_range.max = pt3D->pt3D.x; } else { if (x_range.min > pt3D->pt3D.x) x_range.min = pt3D->pt3D.x; if (x_range.max < pt3D->pt3D.x) x_range.max = pt3D->pt3D.x; } if (y_range.max < y_range.min) { y_range.min = pt3D->pt3D.y; y_range.max = pt3D->pt3D.y; } else { if (y_range.min > pt3D->pt3D.y) y_range.min = pt3D->pt3D.y; if (y_range.max < pt3D->pt3D.y) y_range.max = pt3D->pt3D.y; } } scan_lines.push_back(a_line); } int imgRows = 992; int imgCols = 1056; double y_rows = 960.0; double x_cols = 1024.0; //计算投影比例 double x_scale = (x_range.max - x_range.min) / x_cols; double y_scale = (y_range.max - y_range.min) / y_rows; if (x_scale > y_scale) { x_scale = y_scale; int nx_cols = (int)((x_range.max - x_range.min) / x_scale) + 1; if ( (nx_cols % 2) > 0) nx_cols += 1; x_cols = nx_cols; imgCols = x_cols + 32.0; } else { y_scale = x_scale; int ny_rows = (int)((y_range.max - y_range.min) / y_scale) + 1; if ((ny_rows % 2) > 0) ny_rows += 1; y_rows = ny_rows; imgRows = y_rows + 32.0; } cv::Mat img = cv::Mat::zeros(imgRows, imgCols, CV_8UC3); _XOYprojection_nodePos(img, scan_lines, nodeOps, x_scale, y_scale, x_range, y_range); cv::imwrite(fileName, img); return; } void _outputCalibPara(char* fileName, SSG_planeCalibPara calibPara) { std::ofstream sw(fileName); char dataStr[250]; //调平矩阵 sprintf_s(dataStr, 250, "%g, %g, %g", calibPara.planeCalib[0], calibPara.planeCalib[1], calibPara.planeCalib[2]); sw << dataStr << std::endl; sprintf_s(dataStr, 250, "%g, %g, %g", calibPara.planeCalib[3], calibPara.planeCalib[4], calibPara.planeCalib[5]); sw << dataStr << std::endl; sprintf_s(dataStr, 250, "%g, %g, %g", calibPara.planeCalib[6], calibPara.planeCalib[7], calibPara.planeCalib[8]); sw << dataStr << std::endl; //地面高度 sprintf_s(dataStr, 250, "%g", calibPara.planeHeight); sw << dataStr << std::endl; //反向旋转矩阵 sprintf_s(dataStr, 250, "%g, %g, %g", calibPara.invRMatrix[0], calibPara.invRMatrix[1], calibPara.invRMatrix[2]); sw << dataStr << std::endl; sprintf_s(dataStr, 250, "%g, %g, %g", calibPara.invRMatrix[3], calibPara.invRMatrix[4], calibPara.invRMatrix[5]); sw << dataStr << std::endl; sprintf_s(dataStr, 250, "%g, %g, %g", calibPara.invRMatrix[6], calibPara.invRMatrix[7], calibPara.invRMatrix[8]); sw << dataStr << std::endl; sw.close(); } SSG_planeCalibPara _readCalibPara(char* fileName) { //设置初始结果 double initCalib[9] = { 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 }; SSG_planeCalibPara planePara; for (int i = 0; i < 9; i++) planePara.planeCalib[i] = initCalib[i]; planePara.planeHeight = -1.0; for (int i = 0; i < 9; i++) planePara.invRMatrix[i] = initCalib[i]; std::ifstream inputFile(fileName); std::string linedata; if (inputFile.is_open() == false) return planePara; //调平矩阵 std::getline(inputFile, linedata); sscanf_s(linedata.c_str(), "%lf, %lf, %lf", &planePara.planeCalib[0], &planePara.planeCalib[1], &planePara.planeCalib[2]); std::getline(inputFile, linedata); sscanf_s(linedata.c_str(), "%lf, %lf, %lf", &planePara.planeCalib[3], &planePara.planeCalib[4], &planePara.planeCalib[5]); std::getline(inputFile, linedata); sscanf_s(linedata.c_str(), "%lf, %lf, %lf", &planePara.planeCalib[6], &planePara.planeCalib[7], &planePara.planeCalib[8]); //地面高度 std::getline(inputFile, linedata); sscanf_s(linedata.c_str(), "%lf", &planePara.planeHeight); //反向旋转矩阵 std::getline(inputFile, linedata); sscanf_s(linedata.c_str(), "%lf, %lf, %lf", &planePara.invRMatrix[0], &planePara.invRMatrix[1], &planePara.invRMatrix[2]); std::getline(inputFile, linedata); sscanf_s(linedata.c_str(), "%lf, %lf, %lf", &planePara.invRMatrix[3], &planePara.invRMatrix[4], &planePara.invRMatrix[5]); std::getline(inputFile, linedata); sscanf_s(linedata.c_str(), "%lf, %lf, %lf", &planePara.invRMatrix[6], &planePara.invRMatrix[7], &planePara.invRMatrix[8]); inputFile.close(); return planePara; } #define TEST_CONVERT_TO_GRID 0 #define TEST_COMPUTE_SIEVE_NODES 1 #define TEST_COMPUTE_CALIB_PARA 0 #define TEST_GROUP 2 int main() { #if TEST_CONVERT_TO_GRID //将数据转换成栅格格式格式 char _scan_dir[256]; int lineNum = 0; float lineV = 0.0f; int dataCalib = 0; int maxTimeStamp = 0; int clockPerSecond = 0; sprintf_s(_scan_dir, "F:\\上古\\项目\\筛孔节点检测\\20250303 筛网数据\\"); char _scan_file[256]; double _F = 1295.6; //f for (int i = 1; i <= 12; i++) { sprintf_s(_scan_file, "%s%d_LaserData_Ik256139.txt", _scan_dir, i); SVzNLXYZRGBDLaserLine* laser3DPoints_RGBD = vzReadLaserScanPointFromFile_XYZRGB(_scan_file, &lineNum, &lineV, &dataCalib, &maxTimeStamp, &clockPerSecond); if (laser3DPoints_RGBD == NULL) continue; #if 0 double rpy[3] = { 0,-18, 0 }; double camPoseR[9]; EulerRpyToRotation1(rpy, camPoseR); #else double camPoseR[9] = { 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 }; #endif int vldLineNum = 0; SVzNL3DLaserLine* gridData = _convertToGridData_XYZRGB(laser3DPoints_RGBD, lineNum, _F, camPoseR, &vldLineNum); char _out_file[256]; sprintf_s(_out_file, "%sLaserLine%d_grid.txt", _scan_dir, i); _outputScanDataFile_self(_out_file, gridData, vldLineNum, lineV, maxTimeStamp, clockPerSecond); #if 0 //生成水平扫描数据 int hLineNum = gridData[0].nPositionCnt; SVzNL3DLaserLine* hScanData = (SVzNL3DLaserLine*)malloc(sizeof(SVzNL3DLaserLine) * hLineNum); memset(hScanData, 0, sizeof(SVzNL3DLaserLine) * hLineNum); for (int hLine = 0; hLine < hLineNum; hLine++) { hScanData[hLine].nPositionCnt = vldLineNum; hScanData[hLine].nTimeStamp = hLine * 1000; hScanData[hLine].p3DPosition = (SVzNL3DPosition*)malloc(sizeof(SVzNL3DPosition) * lineNum); memset(hScanData[hLine].p3DPosition, 0, sizeof(SVzNL3DPosition) * lineNum); for (int m = 0; m < vldLineNum; m++) { hScanData[hLine].p3DPosition[m].nPointIdx = m; hScanData[hLine].p3DPosition[m].pt3D.x = gridData[m].p3DPosition[hLine].pt3D.y; hScanData[hLine].p3DPosition[m].pt3D.y = gridData[m].p3DPosition[hLine].pt3D.x; hScanData[hLine].p3DPosition[m].pt3D.z = gridData[m].p3DPosition[hLine].pt3D.z; } } sprintf_s(_out_file, "%sLaserLine%d_hScanData.txt", _scan_dir, i); _outputScanDataFile_removeZeros(_out_file, hScanData, hLineNum, lineV, maxTimeStamp, clockPerSecond); #endif printf("%s: convert done!\n", _scan_file); } printf("all converting done!\n", _scan_file); #endif #if TEST_COMPUTE_CALIB_PARA char _calib_datafile[256]; sprintf_s(_calib_datafile, "F:\\上古\\项目\\筛孔节点检测\\20250304 筛网\\LaserLine1_grid.txt"); std::vector dataROIs; dataROIs.resize(4); dataROIs[0].xRange = { -120, -107 }; dataROIs[0].yRange = { -169, -79 }; dataROIs[0].zRange = { 543, 557 }; dataROIs[1].xRange = { -105, -95 }; dataROIs[1].yRange = { 84, 208 }; dataROIs[1].zRange = { 535, 548 }; dataROIs[2].xRange = { 89, 103 }; dataROIs[2].yRange = { -180, -57 }; dataROIs[2].zRange = { 543, 557 }; dataROIs[3].xRange = { 104, 116 }; dataROIs[3].yRange = { 0, 198 }; dataROIs[3].zRange = { 535, 548 }; int lineNum = 0; float lineV = 0.0f; int dataCalib = 0; int maxTimeStamp = 0; int clockPerSecond = 0; SVzNL3DLaserLine* laser3DPoints = vzReadLaserScanPointFromFile_XYZ(_calib_datafile, &lineNum, &lineV, &dataCalib, &maxTimeStamp, &clockPerSecond); if (laser3DPoints) { SSG_planeCalibPara calibPara = sg_getSieveBaseCalibPara( laser3DPoints, lineNum, dataROIs); //结果进行验证 for (int i = 0; i < lineNum; i++) { if (i == 14) int kkk = 1; //行处理 //调平,去除地面 sg_lineDataR(&laser3DPoints[i], calibPara.planeCalib, calibPara.planeHeight-1); } // char calibFile[250]; sprintf_s(calibFile, "F:\\上古\\项目\\筛孔节点检测\\20250304 筛网\\ground_calib_para.txt"); _outputCalibPara(calibFile, calibPara); char _out_file[256]; sprintf_s(_out_file, "F:\\上古\\项目\\筛孔节点检测\\20250304 筛网\\LaserLine1_grid_calib.txt"); _outputScanDataFile_self(_out_file, laser3DPoints, lineNum, lineV, maxTimeStamp, clockPerSecond); printf("%s: calib done!\n", _calib_datafile); } #endif #if TEST_COMPUTE_SIEVE_NODES const char* dataPath[TEST_GROUP] = { "F:\\ShangGu\\项目\\筛孔节点检测\\20250304 筛网\\", //0 "F:\\ShangGu\\项目\\筛孔节点检测\\20250303 筛网数据\\", //1 }; SVzNLRange fileIdx[TEST_GROUP] = { {1,9},{1,12} }; SSG_planeCalibPara poseCalibPara; //初始化成单位阵 poseCalibPara.planeCalib[0] = 1.0; poseCalibPara.planeCalib[1] = 0.0; poseCalibPara.planeCalib[2] = 0.0; poseCalibPara.planeCalib[3] = 0.0; poseCalibPara.planeCalib[4] = 1.0; poseCalibPara.planeCalib[5] = 0.0; poseCalibPara.planeCalib[6] = 0.0; poseCalibPara.planeCalib[7] = 0.0; poseCalibPara.planeCalib[8] = 1.0; poseCalibPara.planeHeight = -1.0; for (int i = 0; i < 9; i++) poseCalibPara.invRMatrix[i] = poseCalibPara.planeCalib[i]; SSG_sieveNodeDetectionParam algoParam; algoParam.sieveDiameter = 5; // algoParam.sieveHoleSize = 15; algoParam.slopeParam.LSlopeZWin = 5; algoParam.slopeParam.minLJumpH = 4; // 30; // algoParam.bagParam.bagH / 8; algoParam.slopeParam.minEndingGap = 2; algoParam.slopeParam.validSlopeH = 4; algoParam.growParam.maxLineSkipNum = 5; algoParam.growParam.yDeviation_max = algoParam.sieveDiameter * 1.5; algoParam.growParam.maxSkipDistance = algoParam.sieveDiameter / 2; algoParam.growParam.zDeviation_max = algoParam.sieveDiameter * 1.5; //袋子高度1/2 algoParam.growParam.minLTypeTreeLen = algoParam.sieveDiameter * 1.5; //mm algoParam.growParam.minVTypeTreeLen = algoParam.sieveDiameter * 1.5; //mm char _scan_file[256]; int endGroup = TEST_GROUP - 1; for (int grp = 0; grp <= 1; grp++) { if (0 == grp) { char calibFile[250]; sprintf_s(calibFile, "%sground_calib_para.txt", dataPath[grp]); poseCalibPara = _readCalibPara(calibFile); poseCalibPara.planeHeight = poseCalibPara.planeHeight - 1; } for (int fidx = fileIdx[grp].nMin; fidx <= fileIdx[grp].nMax; fidx++) { //fidx = 102; int lineNum = 0; float lineV = 0.0f; int dataCalib = 0; int maxTimeStamp = 0; int clockPerSecond = 0; sprintf_s(_scan_file, "%sLaserLine%d_grid.txt", dataPath[grp], fidx); SVzNL3DLaserLine* laser3DPoints = vzReadLaserScanPointFromFile_XYZ(_scan_file, &lineNum, &lineV, &dataCalib, &maxTimeStamp, &clockPerSecond); if (laser3DPoints == NULL) continue; algoParam.filterParam.continuityTh = 20.0; //噪声滤除。当相邻点的z跳变大于此门限时,检查是否为噪声。若长度小于outlierLen, 视为噪声 algoParam.filterParam.outlierTh = 5; long t1 = GetTickCount64(); //调平,去除地面 for (int i = 0; i < lineNum; i++) { sg_lineDataR(&laser3DPoints[i], poseCalibPara.planeCalib, poseCalibPara.planeHeight); } //计算节点位置 std::vector nodePos; sg_getSieveNodes( laser3DPoints, lineNum, algoParam, nodePos); long t2 = GetTickCount64(); char _dbg_file[256]; #if 1 sprintf_s(_dbg_file, "%sresult\\LaserLine%d_result.txt", dataPath[grp], fidx); _outputScanDataFile_RGBD_obj_XYZ(_dbg_file, laser3DPoints, lineNum, lineV, maxTimeStamp, clockPerSecond, nodePos); sprintf_s(_dbg_file, "%sresult\\LaserLine%d_result_img.png", dataPath[grp], fidx); cv::String imgName(_dbg_file); double rpy[3] = { -30, 15, 0 }; //{ 0,-45, 0 }; // _genXOYProjectionImage_nodePos(imgName, laser3DPoints, lineNum, nodePos); #endif #if 0 //量化成2D图像作为训练样本 cv::Mat project2D_img; double z_scale = 3.0; double xy_scale = 2.0; project2DWithInterpolate(project2D_img, laser3DPoints, lineNum, xy_scale, z_scale); cv::Mat project2D_color; cv::applyColorMap(project2D_img, project2D_color, cv::COLORMAP_JET); sprintf_s(_dbg_file, "%simg2D_JET\\LaserLine%d_img2D.png", dataPath[grp], fidx); cv::String img2DName(_dbg_file); cv::imwrite(img2DName, project2D_color); cv::Mat project2D_color_HOT; cv::applyColorMap(project2D_img, project2D_color_HOT, cv::COLORMAP_HOT); sprintf_s(_dbg_file, "%simg2D\\LaserLine%d_img2D.png", dataPath[grp], fidx); cv::String img2DName_HOT(_dbg_file); cv::imwrite(img2DName_HOT, project2D_color_HOT); #endif printf("%s: %d(ms)!\n", _scan_file, (int)(t2 - t1)); } } #endif printf("all done!\n"); } // 运行程序: Ctrl + F5 或调试 >“开始执行(不调试)”菜单 // 调试程序: F5 或调试 >“开始调试”菜单 // 入门使用技巧: // 1. 使用解决方案资源管理器窗口添加/管理文件 // 2. 使用团队资源管理器窗口连接到源代码管理 // 3. 使用输出窗口查看生成输出和其他消息 // 4. 使用错误列表窗口查看错误 // 5. 转到“项目”>“添加新项”以创建新的代码文件,或转到“项目”>“添加现有项”以将现有代码文件添加到项目 // 6. 将来,若要再次打开此项目,请转到“文件”>“打开”>“项目”并选择 .sln 文件